Role Exchange-Based Self-Training Semi-Supervision Framework for Complex Medical Image Segmentation

培训(气象学) 计算机科学 人工智能 图像(数学) 图像分割 分割 计算机视觉 心理学 业务 知识管理 地理 气象学
作者
Yonghuang Wu,Guoqing Wu,Jixian Lin,Yuanyuan Wang,Jinhua Yu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3432877
摘要

Segmentation of complex medical images such as vascular network and pulmonary tracheal network requires segmentation of many tiny targets on each tomographic section of the 3-D medical image volume. Although semantic segmentation of medical images based on deep learning has made great progress, fully supervised models require a great amount of annotations, making such complex medical image segmentation a difficult problem. In this article, we propose a semi-supervised model for complex medical image segmentation, which innovatively proposes a bidirectional self-training paradigm, through dynamically exchanging the roles of teacher and student by estimating the reliability at the model level. The direction of information and knowledge transfer between the two networks can be controlled, and the probability distribution of the roles of teacher and student in the next stage will be jointly determined by the model's uncertainty and instability in the training process. We also resolve the problem that loosely coupled networks are prone to collapse when training on small-scale annotated data by proposing asymmetric supervision (AS) strategy and hierarchical dual student (HDS) structure. In particular, a bidirectional distillation loss combined with the role exchange (RE) strategy and a global-local-aware consistency loss are introduced to obtain stable mutual promotion and achieve matching of global and local features, respectively. We conduct detailed experiments on two public datasets and one private dataset and lead existing semi-supervised methods by a large margin, while achieving fully supervised performance at a labeling cost of 5%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初余发布了新的文献求助10
1秒前
1秒前
Evooolet完成签到,获得积分10
1秒前
3秒前
6秒前
淡定无施完成签到,获得积分10
6秒前
7秒前
老马哥完成签到 ,获得积分0
7秒前
8秒前
9秒前
Fox发布了新的文献求助10
9秒前
Roy完成签到,获得积分10
10秒前
峡星牙发布了新的文献求助10
11秒前
慢慢完成签到,获得积分10
11秒前
wanci应助玩命的若菱采纳,获得10
12秒前
wxy发布了新的文献求助10
13秒前
Akim应助科研小菜鸟采纳,获得10
14秒前
15秒前
qing完成签到 ,获得积分10
16秒前
积极方盒完成签到,获得积分20
17秒前
17秒前
科研通AI5应助YQQ采纳,获得10
20秒前
YX发布了新的文献求助10
20秒前
lijiajie发布了新的文献求助10
20秒前
顾矜应助峡星牙采纳,获得10
22秒前
Fox完成签到,获得积分20
24秒前
lijiajie完成签到,获得积分10
25秒前
单薄冬天完成签到 ,获得积分20
25秒前
26秒前
Ava应助wakaka采纳,获得10
27秒前
田様应助YX采纳,获得10
28秒前
科研通AI5应助Fox采纳,获得10
29秒前
乔心发布了新的文献求助10
31秒前
长命百岁完成签到 ,获得积分10
31秒前
32秒前
zhongzhong完成签到,获得积分10
33秒前
hanchangcun发布了新的文献求助10
33秒前
iNk应助乔心采纳,获得10
35秒前
iNk应助乔心采纳,获得10
35秒前
春景当思完成签到,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327032
关于积分的说明 10229289
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669728
邀请新用户注册赠送积分活动 799249
科研通“疑难数据库(出版商)”最低求助积分说明 758757