电介质
介电强度
材料科学
电气故障
树(集合论)
电子
辐照
复合材料
液体电介质
类型(生物学)
工程物理
光电子学
电气工程
物理
工程类
数学
地质学
核物理学
数学分析
古生物学
作者
Kathryn M. Sturge,Noah Hoppis,Ariana M. Bussio,J. Barney,B. Beaudoin,Cameron J. Brown,B.E. Carlsten,Carolyn Chun,Bryson Callie Clifford,John Cumings,Nicholas Dallmann,Jack Fitzgibbon,Emily H. Frashure,Ashley E. Hammell,José Hannan,S. L. Henderson,Miriam E. Hiebert,James E. Krutzler,Joseph P. Lichthardt,Mark Marr-Lyon
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2024-07-18
卷期号:385 (6706): 300-304
被引量:3
标识
DOI:10.1126/science.ado5943
摘要
Dielectric materials are foundational to our modern-day communications, defense, and commerce needs. Although dielectric breakdown is a primary cause of failure of these systems, we do not fully understand this process. We analyzed the dielectric breakdown channel propagation dynamics of two distinct types of electrical trees. One type of these electrical trees has not been formally classified. We observed the propagation speed of this electrical tree type to exceed 10 million meters per second. These results identify substantial gaps in the understanding of dielectric breakdown, and filling these gaps is paramount to the design and engineering of dielectric materials that are less susceptible to electrostatic discharge failure.
科研通智能强力驱动
Strongly Powered by AbleSci AI