电化学
金属有机骨架
再分配(选举)
极地的
背景(考古学)
密度泛函理论
化学
电子转移
功能群
催化作用
极性(国际关系)
化学极性
材料科学
纳米技术
偶极子
光化学
电极
计算化学
有机化学
物理化学
吸附
法学
生物
聚合物
古生物学
政治学
物理
天文
政治
细胞
生物化学
作者
Junnan Chen,Guangming Wang,Yingjun Dong,Jiapeng Ji,Linbo Li,Ming Xue,Xiaolong Zhang,Hui‐Ming Cheng
出处
期刊:Angewandte Chemie
[Wiley]
日期:2024-10-11
卷期号:64 (4): e202416367-e202416367
被引量:14
标识
DOI:10.1002/anie.202416367
摘要
Abstract The addition of polar functional groups to porous structures is an effective strategy for increasing the ability of metal–organic frameworks (MOFs) to capture CO 2 by enhancing interactions between the dipoles of the polar functional groups and the quadrupoles of CO 2 . However, the potential of MOFs with polar functional groups to activate CO 2 has not been investigated in the context of CO 2 electrolysis. In this study, we report a mixed‐ligand strategy to incorporate various functional groups in the MOFs. We found that substituents with strong polarity led to increased catalytic performance of electrochemical CO 2 reduction for these polarized MOFs. Both experimental and theoretical evidence indicates that the presence of polar functional groups induces a charge redistribution in the micropores of MOFs. We have shown that higher electron densities of sp 2 ‐carbon atoms in benzimidazolate ligands reduces the energy barrier to generate *COOH, which is simultaneously controlled by the mass transfer of CO 2 . Our research offers an effective method of disrupting local electron neutrality in the pores of electrocatalysts/supports to activate CO 2 under electrochemical conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI