Segmentation of tunnel water leakage based on a lightweight DeepLabV3+ model

泄漏(经济) 计算机科学 材料科学 环境科学 宏观经济学 经济
作者
Dandan Wang,Gongyu Hou,Q S Chen,Weiyi Li,H.-S. Fu,X. S. Sun,Xiaodong Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015414-015414
标识
DOI:10.1088/1361-6501/ad894f
摘要

Abstract The accurate and efficient detection of water leakage with complex backgrounds is crucial for the safety of metro operations. A lightweight segmentation method for metro tunnel water leakage based on transfer learning is proposed. Firstly, this is based on the Deeplabv3+ model and adopts MobileNetv3-Large as the backbone feature extraction network, which significantly reduces the network parameters and improves the detection speed; secondly, it incorporates the efficient channel attention mechanism, which enables the model to adaptively adjust the weights of the channel features and capture the inter-channel relationships in the image, which significantly improves the model’s ability for feature extraction ability; furthermore, for the problem of severe imbalance between positive and negative samples in the dataset, the recognition accuracy of complex samples is increased by optimizing the loss function; finally, the training method of transfer learning is utilized to solve the problem of scarcity of water leakage dataset, and to improve the model’s accuracy and generalization ability. The results show that the model has more significant detection accuracy and segmentation speed advantages than today’s mainstream semantic segmentation model. With strong generalization ability in complex environments (e.g. low illumination and multiple obstructions), model can be used for intelligent operation and maintenance in metro tunnel projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文静竹发布了新的文献求助10
3秒前
共享精神应助Nicole采纳,获得10
3秒前
我思故我在完成签到,获得积分0
3秒前
3秒前
4秒前
shen完成签到,获得积分10
4秒前
keyantong发布了新的文献求助10
4秒前
余俊辉完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
天天快乐应助李李李采纳,获得10
9秒前
qq完成签到 ,获得积分10
9秒前
希望天下0贩的0应助nannan采纳,获得10
9秒前
12秒前
ZLWF发布了新的文献求助10
12秒前
可爱的函函应助keyantong采纳,获得10
12秒前
Gru发布了新的文献求助10
12秒前
科研通AI5应助淡然扬采纳,获得10
12秒前
科研通AI5应助斯文静竹采纳,获得10
14秒前
14秒前
陈一一完成签到 ,获得积分10
15秒前
15秒前
18秒前
砂砾发布了新的文献求助10
18秒前
keyantong完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
赘婿应助wyc采纳,获得10
22秒前
乐乐发布了新的文献求助30
22秒前
在水一方应助斯文静竹采纳,获得10
23秒前
23秒前
26秒前
Kai完成签到,获得积分10
26秒前
淡然扬发布了新的文献求助10
27秒前
lucy发布了新的文献求助10
28秒前
有魅力冰薇完成签到,获得积分10
29秒前
ZLWF发布了新的文献求助10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212780
求助须知:如何正确求助?哪些是违规求助? 3747005
关于积分的说明 11789485
捐赠科研通 3414563
什么是DOI,文献DOI怎么找? 1873739
邀请新用户注册赠送积分活动 928108
科研通“疑难数据库(出版商)”最低求助积分说明 837442