Multimodal contrastive learning for spatial gene expression prediction using histology images

计算机科学 编码器 人工智能 空间语境意识 空间分析 源代码 遥感 操作系统 地质学
作者
Wenwen Min,Zhiceng Shi,Jun Zhang,Jun Wan,Changmiao Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6) 被引量:12
标识
DOI:10.1093/bib/bbae551
摘要

Abstract In recent years, the advent of spatial transcriptomics (ST) technology has unlocked unprecedented opportunities for delving into the complexities of gene expression patterns within intricate biological systems. Despite its transformative potential, the prohibitive cost of ST technology remains a significant barrier to its widespread adoption in large-scale studies. An alternative, more cost-effective strategy involves employing artificial intelligence to predict gene expression levels using readily accessible whole-slide images stained with Hematoxylin and Eosin (H&E). However, existing methods have yet to fully capitalize on multimodal information provided by H&E images and ST data with spatial location. In this paper, we propose mclSTExp, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction. We conceptualize each spot as a “word”, integrating its intrinsic features with spatial context through the self-attention mechanism of a Transformer encoder. This integration is further enriched by incorporating image features via contrastive learning, thereby enhancing the predictive capability of our model. We conducted an extensive evaluation of highly variable genes in two breast cancer datasets and a skin squamous cell carcinoma dataset, and the results demonstrate that mclSTExp exhibits superior performance in predicting spatial gene expression. Moreover, mclSTExp has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists. Our source code is available at https://github.com/shizhiceng/mclSTExp.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是是是咯完成签到,获得积分10
1秒前
尹淑阁发布了新的文献求助30
1秒前
1秒前
量子星尘发布了新的文献求助150
1秒前
1秒前
1秒前
3秒前
浮游应助Steven采纳,获得10
3秒前
杨blinh发布了新的文献求助10
4秒前
萧一发布了新的文献求助10
4秒前
4秒前
4秒前
科研通AI2S应助重要觅风采纳,获得10
4秒前
周雨昕发布了新的文献求助10
5秒前
太阳alright发布了新的文献求助10
5秒前
俊逸艳一发布了新的文献求助10
6秒前
浮游应助想学习采纳,获得30
6秒前
浮游应助想学习采纳,获得10
6秒前
起床做核酸完成签到,获得积分10
6秒前
万事顺遂关注了科研通微信公众号
7秒前
乐乐应助FLY采纳,获得10
7秒前
鲤鱼烙发布了新的文献求助10
7秒前
ding应助西红柿采纳,获得10
8秒前
进击的巨人完成签到,获得积分10
8秒前
8秒前
Sylvia卉完成签到,获得积分10
9秒前
风清扬发布了新的文献求助10
9秒前
周雨昕完成签到,获得积分10
10秒前
张晶晶完成签到,获得积分10
10秒前
小燕子发布了新的文献求助10
11秒前
11秒前
Akim应助张宽宽采纳,获得30
11秒前
Erin完成签到,获得积分10
11秒前
科研通AI5应助honeyYU采纳,获得10
12秒前
落后醉易发布了新的文献求助10
13秒前
AnLouCun发布了新的文献求助10
13秒前
14秒前
eleven完成签到,获得积分10
14秒前
酷波er应助俊逸艳一采纳,获得10
14秒前
zz完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048621
求助须知:如何正确求助?哪些是违规求助? 4276972
关于积分的说明 13332058
捐赠科研通 4091541
什么是DOI,文献DOI怎么找? 2239084
邀请新用户注册赠送积分活动 1245992
关于科研通互助平台的介绍 1174532