亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Broadband Ground-Motion Simulations with Machine-Learning-Based High-Frequency Waves from Fourier Neural Operators

频域 地震学 强地震动 波形 地质学 地震灾害 航程(航空) 峰值地面加速度 地震动 傅里叶变换 时域 计算机科学 声学 物理 数学 工程类 电信 数学分析 雷达 航空航天工程 计算机视觉
作者
Tariq Anwar Aquib,P. Martín
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:114 (6): 2846-2868 被引量:9
标识
DOI:10.1785/0120240027
摘要

ABSTRACT Seismic hazards analysis relies on accurate estimation of expected ground motions for potential future earthquakes. However, obtaining realistic and robust ground-motion estimates for specific combinations of earthquake magnitudes, source-to-site distances, and site conditions is still challenging due to the limited empirical data. Seismic hazard analysis also benefits from the simulation of ground-motion time histories, whereby physics-based simulations provide reliable time histories but are restricted to a lower frequency for computational reasons and missing information on small-scale earthquake-source and Earth-structure properties that govern high-frequency (HF) seismic waves. In this study, we use densely recorded acceleration broadband (BB) waveforms to develop a machine-learning (ML) model for estimating HF ground-motion time histories from their low-frequency (LF) counterparts based on Fourier Neural Operators (FNOs) and Generative Adversarial Networks (GANs). Our approach involves two separate FNO models to estimate the time and frequency properties of ground motions. In the time domain, we establish a relationship between normalized low-pass filtered and BB waveforms, whereas in the frequency domain, the HF spectrum is trained based on the LF spectrum. These are then combined to generate BB ground motions. We also consider seismological and site-specific factors during the training process to enhance the accuracy of the predictions. We train and validate our models using ground-motion data recorded over a 20 yr period at 18 stations in the Ibaraki province, Japan, considering earthquakes in the magnitude range M 4–7. Based on goodness-of-fit measures, we demonstrate that our simulated time series closely matches recorded observations. To address the ground-motion variability, we employ a conditioned GAN approach. Finally, we compare our results with several alternative approaches for ground-motion simulation (stochastic, hybrid, and ML-based) to highlight the advantages and improvements of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
8秒前
lsl应助科研通管家采纳,获得10
8秒前
lsl应助科研通管家采纳,获得10
8秒前
lsl应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
佳佳发布了新的文献求助10
38秒前
鳗鱼忆山完成签到 ,获得积分10
42秒前
佳佳完成签到,获得积分20
1分钟前
1分钟前
无无完成签到 ,获得积分10
1分钟前
1分钟前
小A同学发布了新的文献求助10
1分钟前
小A同学完成签到,获得积分10
2分钟前
汉堡包应助aydidar采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
2分钟前
HC发布了新的文献求助10
2分钟前
aydidar发布了新的文献求助10
2分钟前
2分钟前
ding应助HC采纳,获得30
2分钟前
领导范儿应助Ruby采纳,获得10
2分钟前
2分钟前
linkman发布了新的文献求助50
2分钟前
2分钟前
2分钟前
陳.发布了新的文献求助10
2分钟前
十二发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Xhnz发布了新的文献求助10
3分钟前
3分钟前
十二完成签到,获得积分20
3分钟前
3分钟前
Ruby发布了新的文献求助10
3分钟前
zpli完成签到 ,获得积分10
3分钟前
lsl应助科研通管家采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
陈小子完成签到 ,获得积分10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765318
关于积分的说明 15025565
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567925
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004