纳米凝胶
化学
毛细管电泳
神经氨酸酶
唾液酸
色谱法
唾液酸酶
酶
丝氨酸
电泳
IC50型
生物化学
药物输送
有机化学
体外
作者
Laura D. Casto-Boggess,Lisa Holland,Paul A. Lawer-Yolar,John A. Lucas,Jessica R. Guerrette
标识
DOI:10.1021/acs.analchem.2c03584
摘要
Neuraminidase inhibitors modulate infections that involve sialic acids, making quantitative analyses of this inhibitory effect important for selecting and designing potential therapeutics. An automated nanogel capillary electrophoresis system is developed that integrates a 5 nL enzyme inhibition reaction in line with a 5 min separation-based assay of the enzymatic product to quantify inhibition as the half maximal inhibitory concentration (IC50) and inhibitor constant (Ki). A neuraminidase enzyme from Clostridium perfringens is non-covalently immobilized in a thermally tunable nanogel positioned in the thermally controlled region of the capillary by increasing the capillary temperature to 37 °C. Aqueous inhibitor solutions are loaded into the capillary during the nanogel patterning step to surround the enzyme zone. The capillary electrophoresis separation provides a means to distinguish the de-sialylated product, enabling the use of sialyllactose which contains the trisaccharide motif observed on serine/threonine-linked (O-linked) glycans. A universal nanogel patterning scheme is developed that does not require pre-mixing of enzymes with inhibitors when an automated capillary electrophoresis instrument is used, thus reducing the consumption of enzymes and enabling adaption of the method to different inhibitors. The universal approach is successfully applied to two classical neuraminidase inhibitors with different electrophoretic mobilities. The IC50 and Ki values obtained for N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (DANA) are 13 ± 3 and 5.0 ± 0.9 μM, respectively, and 28 ± 3 and 11 ± 1 μM, respectively, for Siastatin B. These values agree with literature reports and reflect the weaker inhibition anticipated for Siastatin B in comparison to DANA.
科研通智能强力驱动
Strongly Powered by AbleSci AI