清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MTU: A multi-tasking U-net with hybrid convolutional learning and attention modules for cancer classification and gland Segmentation in Colon Histopathological Images

人工智能 计算机科学 深度学习 概化理论 特征提取 模式识别(心理学) 分割 卷积神经网络 数字化病理学 残余物 规范化(社会学) 算法 数学 人类学 统计 社会学
作者
Manju Dabass,Sharda Vashisth,Rekha Vig
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106095-106095 被引量:13
标识
DOI:10.1016/j.compbiomed.2022.106095
摘要

A clinically comparable multi-tasking computerized deep U-Net-based model is demonstrated in this paper. It intends to offer clinical gland morphometric information and cancer grade classification to be provided as referential opinions for pathologists in order to abate human errors. It embraces enhanced feature learning capability that aids in extraction of potent multi-scale features; efficacious semantic gap recovery during feature concatenation; and successful interception of resolution-degradation and vanishing gradient problems while performing moderate computations. It is proposed by integrating three unique novel structural components namely Hybrid Convolutional Learning Units in the encoder and decoder, Attention Learning Units in skip connection, and Multi-Scalar Dilated Transitional Unit as the transitional layer in the traditional U-Net architecture. These units are composed of the amalgamated phenomenon of multi-level convolutional learning through conventional, atrous, residual, depth-wise, and point-wise convolutions which are further incorporated with target-specific attention learning and enlarged effectual receptive field size. Also, pre-processing techniques of patch-sampling, augmentation (color and morphological), stain-normalization, etc. are employed to burgeon its generalizability. To build network invariance towards digital variability, exhaustive experiments are conducted using three public datasets (Colorectal Adenocarcinoma Gland (CRAG), Gland Segmentation (GlaS) challenge, and Lung Colon-25000 (LC-25K) dataset)) and then its robustness is verified using an in-house private dataset of Hospital Colon (HosC). For the cancer classification, the proposed model achieved results of Accuracy (CRAG(95%), GlaS(97.5%), LC-25K(99.97%), HosC(99.45%)), Precision (CRAG(0.9678), GlaS(0.9768), LC-25K(1), HosC(1)), F1-score (CRAG(0.968), GlaS(0.977), LC 25K(0.9997), HosC(0.9965)), and Recall (CRAG(0.9677), GlaS(0.9767), LC-25K(0.9994), HosC(0.9931)). For the gland detection and segmentation, the proposed model achieved competitive results of F1-score (CRAG(0.924), GlaS(Test A(0.949), Test B(0.918)), LC-25K(0.916), HosC(0.959)); Object-Dice Index (CRAG(0.959), GlaS(Test A(0.956), Test B(0.909)), LC-25K(0.929), HosC(0.922)), and Object-Hausdorff Distance (CRAG(90.47), GlaS(Test A(23.17), Test B(71.53)), LC-25K(96.28), HosC(85.45)). In addition, the activation mappings for testing the interpretability of the classification decision-making process are reported by utilizing techniques of Local Interpretable Model-Agnostic Explanations, Occlusion Sensitivity, and Gradient-Weighted Class Activation Mappings. This is done to provide further evidence about the model's self-learning capability of the comparable patterns considered relevant by pathologists without any pre-requisite for annotations. These activation mapping visualization outcomes are evaluated by proficient pathologists, and they delivered these images with a class-path validation score of (CRAG(9.31), GlaS(9.25), LC-25K(9.05), and HosC(9.85)). Furthermore, the seg-path validation score of (GlaS (Test A(9.40), Test B(9.25)), CRAG(9.27), LC-25K(9.01), HosC(9.19)) given by multiple pathologists is included for the final segmented outcomes to substantiate the clinical relevance and suitability for facilitation at the clinical level. The proposed model will aid pathologists to formulate an accurate diagnosis by providing a referential opinion during the morphology assessment of histopathology images. It will reduce unintentional human error in cancer diagnosis and consequently will enhance patient survival rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuqi完成签到 ,获得积分10
5秒前
孟寐以求完成签到 ,获得积分10
15秒前
22秒前
mochalv123完成签到 ,获得积分10
41秒前
zzy完成签到,获得积分10
42秒前
流川枫完成签到,获得积分10
43秒前
47秒前
今后应助科研通管家采纳,获得10
47秒前
凉面完成签到 ,获得积分10
50秒前
草莓熊1215完成签到 ,获得积分10
53秒前
Raul完成签到 ,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
zyb完成签到 ,获得积分10
1分钟前
1分钟前
大轩完成签到 ,获得积分10
2分钟前
fogsea完成签到,获得积分0
2分钟前
李成恩完成签到 ,获得积分10
2分钟前
拼搏的羊青完成签到,获得积分10
2分钟前
xue112完成签到 ,获得积分10
2分钟前
研友_08oa3n完成签到 ,获得积分10
2分钟前
季夏完成签到,获得积分10
2分钟前
我是老大应助cryscilla采纳,获得10
3分钟前
Axs完成签到,获得积分10
3分钟前
3分钟前
小白白完成签到 ,获得积分10
3分钟前
wang5945完成签到 ,获得积分10
4分钟前
章铭-111完成签到 ,获得积分10
4分钟前
4分钟前
大白发布了新的文献求助10
4分钟前
han发布了新的文献求助10
4分钟前
通科研完成签到 ,获得积分10
4分钟前
希望天下0贩的0应助TheLsr采纳,获得10
4分钟前
沐浠完成签到 ,获得积分10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
游01完成签到 ,获得积分10
4分钟前
MchemG应助lxl采纳,获得10
4分钟前
花花完成签到,获得积分10
4分钟前
5分钟前
自然的含蕾完成签到 ,获得积分10
5分钟前
LZQ完成签到,获得积分0
5分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808131
求助须知:如何正确求助?哪些是违规求助? 3352745
关于积分的说明 10360278
捐赠科研通 3068748
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810380
科研通“疑难数据库(出版商)”最低求助积分说明 766076