The social process of coping with work‐related stressors online: A machine learning and interpretive data science approach

应对(心理学) 压力源 社会化媒体 计算机科学 心理学 社会心理学 万维网 精神科 临床心理学
作者
Sima Sajjadiani,Michael Daniels,Hsuan‐Che Huang
出处
期刊:Personnel Psychology [Wiley]
卷期号:77 (2): 321-373 被引量:10
标识
DOI:10.1111/peps.12538
摘要

Abstract People are increasingly turning to social media and online forums like Reddit to cope with work‐related concerns. Previous research suggests that how others respond can be an important determinant of the sharer's affective and well‐being outcomes. However, less is known about whether and how cues embedded in the content of what is shared can shape the type of responses that one receives from others, obscuring the joint and interactive role that both the sharer and listener may play in influencing the sharer's outcomes. In this study, we develop theory to advance our understanding of online coping with an explicitly social focus using computational grounded theorizing and machine learning (ML) techniques applied to a large corpus of work‐related conversations on Reddit. Specifically, our theoretical model sheds light on the dynamics of the online social coping process related to the domain of work. We show that how sharers and listeners interact and react to one another depends on the content of stressors shared, the social coping behaviors used when sharing, and whether the sharer and listener belong to the same occupational context. We contribute to the social coping literature in three ways. First, we clarify how social actors respond to cues embedded in the social coping attempt. Second, we examine the moderating role that such responses play in shaping sharer outcomes. Finally, we extend theory on social coping with work‐related stressors to the online domain. Taken together, this research highlights the importance of the dynamic interplay between sharer and listener in the context of online social coping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
搜集达人应助欢呼的莆采纳,获得10
1秒前
微子完成签到,获得积分10
1秒前
皮老八完成签到 ,获得积分10
1秒前
2秒前
要减肥的慕山完成签到,获得积分20
3秒前
思考的河苇完成签到,获得积分10
3秒前
卓卓发布了新的文献求助10
4秒前
南珰发布了新的文献求助10
6秒前
秋秋秋发布了新的文献求助10
7秒前
笨笨芯应助我不是BOB采纳,获得10
7秒前
Jr L发布了新的文献求助10
7秒前
7秒前
小西米完成签到,获得积分10
8秒前
jjj应助actor2006采纳,获得50
10秒前
我是老大应助单纯灵松采纳,获得10
10秒前
zho发布了新的文献求助10
11秒前
12秒前
12秒前
Jally完成签到,获得积分10
12秒前
上官若男应助彪壮的颦采纳,获得10
13秒前
14秒前
16秒前
大模型应助落寞小蘑菇采纳,获得10
17秒前
Will完成签到,获得积分10
17秒前
CipherSage应助秋秋秋采纳,获得10
18秒前
20秒前
00发布了新的文献求助10
20秒前
黄辉冯发布了新的文献求助10
22秒前
万能图书馆应助cccw采纳,获得10
23秒前
秋秋秋完成签到,获得积分10
24秒前
研友_Ze2V48完成签到,获得积分10
27秒前
NexusExplorer应助秀丽菠萝采纳,获得10
29秒前
小马要努力完成签到,获得积分10
31秒前
悄悄.完成签到,获得积分10
32秒前
勤劳小蘑菇完成签到 ,获得积分10
32秒前
jj完成签到 ,获得积分10
33秒前
33秒前
kk完成签到,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130