清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparison of Feature Selection Methods and Machine Learning Classifiers for Predicting Chronic Obstructive Pulmonary Disease Using Texture-Based CT Lung Radiomic Features

慢性阻塞性肺病 接收机工作特性 医学 特征选择 支持向量机 人工智能 阻塞性肺病 特征(语言学) 模式识别(心理学) 放射科 计算机科学 内科学 语言学 哲学
作者
Kalysta Makimoto,Ryan Au,Amir Moslemi,James C. Hogg,Jean Bourbeau,Wan C. Tan,Miranda Kirby
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (5): 900-910 被引量:22
标识
DOI:10.1016/j.acra.2022.07.016
摘要

Rationale Texture-based radiomics analysis of lung computed tomography (CT) images has been shown to predict chronic obstructive pulmonary disease (COPD) status using machine learning models. However, various approaches are used and it is unclear which provides the best performance. Objectives To compare the most commonly used feature selection and classification methods and determine the optimal models for classifying COPD status in a mild, population-based COPD cohort. Materials and Methods CT images from the multi-center Canadian Cohort Obstructive Lung Disease (CanCOLD) study were pre-processed by resampling the image to a 1mm isotropic voxel volume, segmenting the lung and removing the airways (VIDA Diagnostics Inc.), and applying a threshold of -1000HU-to-0HU. A total of 95 texture features were then extracted from each CT image. Combinations of 17 feature selection methods and 9 classifiers were tested and evaluated. In addition, the role of data cleaning (outlier removal and highly correlated feature removal) was evaluated. The area under the curve (AUC) from the receiver operating characteristic curve was used to evaluate model performance. Results A total of 1204 participants were evaluated (n = 602 no COPD, n = 602 COPD). There were no significant differences between the groups for female sex (no COPD = 46.3%; COPD = 38.5%; p = 0.77), or body mass index (no COPD = 27.7 kg/m2; COPD = 27.4 kg/m2; p = 0.21). The highest AUC value for predicting COPD status (AUC = 0.78 [0.73, 0.84]) was obtained following data cleaning and feature selection using Elastic Net with the Linear-SVM classifier. Conclusion In a population-based cohort, the optimal combination for radiomics-based prediction of COPD status was Elastic Net as the feature selection method and Linear-SVM as the classifier. Texture-based radiomics analysis of lung computed tomography (CT) images has been shown to predict chronic obstructive pulmonary disease (COPD) status using machine learning models. However, various approaches are used and it is unclear which provides the best performance. To compare the most commonly used feature selection and classification methods and determine the optimal models for classifying COPD status in a mild, population-based COPD cohort. CT images from the multi-center Canadian Cohort Obstructive Lung Disease (CanCOLD) study were pre-processed by resampling the image to a 1mm isotropic voxel volume, segmenting the lung and removing the airways (VIDA Diagnostics Inc.), and applying a threshold of -1000HU-to-0HU. A total of 95 texture features were then extracted from each CT image. Combinations of 17 feature selection methods and 9 classifiers were tested and evaluated. In addition, the role of data cleaning (outlier removal and highly correlated feature removal) was evaluated. The area under the curve (AUC) from the receiver operating characteristic curve was used to evaluate model performance. A total of 1204 participants were evaluated (n = 602 no COPD, n = 602 COPD). There were no significant differences between the groups for female sex (no COPD = 46.3%; COPD = 38.5%; p = 0.77), or body mass index (no COPD = 27.7 kg/m2; COPD = 27.4 kg/m2; p = 0.21). The highest AUC value for predicting COPD status (AUC = 0.78 [0.73, 0.84]) was obtained following data cleaning and feature selection using Elastic Net with the Linear-SVM classifier. In a population-based cohort, the optimal combination for radiomics-based prediction of COPD status was Elastic Net as the feature selection method and Linear-SVM as the classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助酥脆炸鸡排采纳,获得10
刚刚
花落无声完成签到 ,获得积分10
1秒前
wang完成签到,获得积分10
4秒前
11秒前
丘比特应助休斯顿采纳,获得30
12秒前
16秒前
zhang20082418发布了新的文献求助10
21秒前
34秒前
zhang20082418完成签到,获得积分10
35秒前
MM完成签到 ,获得积分10
36秒前
wayne完成签到 ,获得积分10
55秒前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
1分钟前
zly完成签到 ,获得积分10
1分钟前
明理问柳发布了新的文献求助10
1分钟前
nano完成签到 ,获得积分10
1分钟前
gwbk完成签到,获得积分10
1分钟前
十一苗完成签到 ,获得积分10
1分钟前
李霞完成签到 ,获得积分10
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
白天亮完成签到,获得积分10
2分钟前
月军完成签到,获得积分10
2分钟前
kmzzy完成签到,获得积分10
2分钟前
肖果完成签到 ,获得积分10
2分钟前
even完成签到 ,获得积分0
2分钟前
hover完成签到,获得积分10
3分钟前
科研通AI5应助酥脆炸鸡排采纳,获得10
3分钟前
3分钟前
QiaoHL完成签到 ,获得积分10
3分钟前
风三郎发布了新的文献求助10
3分钟前
3分钟前
牛仔完成签到 ,获得积分10
3分钟前
3分钟前
自觉豪英关注了科研通微信公众号
3分钟前
晟sheng完成签到 ,获得积分10
3分钟前
CipherSage应助二橦采纳,获得10
3分钟前
Andy_2024完成签到,获得积分10
4分钟前
4分钟前
酥脆炸鸡排完成签到,获得积分10
4分钟前
二橦发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4485708
求助须知:如何正确求助?哪些是违规求助? 3941125
关于积分的说明 12221330
捐赠科研通 3596953
什么是DOI,文献DOI怎么找? 1978282
邀请新用户注册赠送积分活动 1015267
科研通“疑难数据库(出版商)”最低求助积分说明 908496