Contributions of meteorology to ozone variations: Application of deep learning and the Kolmogorov-Zurbenko filter

臭氧 环境科学 大气科学 气象学 气候学 湿度 季节性 地理 数学 统计 地质学
作者
Bavand Sadeghi,Masoud Ghahremanloo,Seyedali Mousavinezhad,Yannic Lops,Arman Pouyaei,Yunsoo Choi
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:310: 119863-119863 被引量:34
标识
DOI:10.1016/j.envpol.2022.119863
摘要

From hourly ozone observations obtained from three regions⸻Houston, Dallas, and West Texas⸻we investigated the contributions of meteorology to changes in surface daily maximum 8-h average (MDA8) ozone from 2000 to 2019. We applied a deep convolutional neural network and Shapely additive explanation (SHAP) to examine the complex underlying nonlinearity between variations of surface ozone and meteorological factors. Results of the models showed that between 2000 and 2019, specific humidity (38% and 27%) and temperature (28% and 37%) contributed the most to ozone formation over the Houston and Dallas metropolitan areas, respectively. On the other hand, the results show that solar radiation (50%) strongly impacted ozone variation over West Texas during this time. Using a combination of the Kolmogorov-Zurbenko (KZ) filter and multiple linear regression, we also evaluated the influence of meteorology on ozone and quantified the contributions of meteorological parameters to trends in surface ozone formation. Our findings showed that in Houston and Dallas, meteorology influenced ozone variations to a large extent. The impacts of meteorology on West Texas, however, showed meteorological factors had fewer influences on ozone variabilities from 2000 to 2019. This study showed that SHAP analysis and the KZ approach can investigate the contributions of the meteorological factors on ozone concentrations and help policymakers enact effective ozone mitigation policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深空完成签到 ,获得积分10
刚刚
酷波er应助sora采纳,获得10
刚刚
万能图书馆应助芷莯采纳,获得10
1秒前
科研通AI5应助123采纳,获得10
1秒前
猪猪hero发布了新的文献求助10
2秒前
烟花应助激动的慕青采纳,获得10
2秒前
金子完成签到,获得积分10
2秒前
2秒前
南南完成签到,获得积分20
2秒前
3秒前
啊琛完成签到,获得积分20
3秒前
小二郎应助Moran采纳,获得10
3秒前
4秒前
fff完成签到 ,获得积分10
4秒前
不懈奋进应助卷毛小狮子采纳,获得50
4秒前
冷静书白发布了新的文献求助20
5秒前
大模型应助大壮采纳,获得10
5秒前
6秒前
徐徐应助jgpiao采纳,获得10
6秒前
6秒前
6秒前
法鱿科完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
NoN发布了新的文献求助10
9秒前
9秒前
酷酷访彤应助merci采纳,获得10
9秒前
激动的半芹完成签到 ,获得积分10
9秒前
在水一方应助Ruiruirui采纳,获得10
9秒前
10秒前
DreamMaker发布了新的文献求助10
10秒前
笑笑完成签到,获得积分10
10秒前
10秒前
芷莯发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11哥应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
Cherry完成签到 ,获得积分10
11秒前
猪猪hero发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790218
求助须知:如何正确求助?哪些是违规求助? 3334933
关于积分的说明 10272867
捐赠科研通 3051419
什么是DOI,文献DOI怎么找? 1674665
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846