清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automated damage detection for open-air and underwater navigation infrastructure using generative AI-produced training data for deep learning models

计算机科学 人工智能 领域(数学) 杠杆(统计) 深度学习 分割 交叉口(航空) 水下 生成模型 机器学习 合成数据 生成语法 工程类 海洋学 数学 地质学 纯数学 航空航天工程
作者
Quincy Alexander,Yasutaka Narazaki,Andrew Maxwell,S.C. Wang,Billie F. Spencer
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241295380
摘要

Research has been continually growing toward the development of computer vision-based inspection tools for large-scale civil infrastructure; however, many deep learning techniques require large datasets to properly train models. Collecting field data can be costly and time-consuming, or may not be feasible, which has led to efforts to leverage synthetic data to supplement field data. Recent advances in text-to-image generative artificial intelligence (AI) offer the potential to quickly create realistic synthetic images of damaged infrastructure, including the complexities of the environment found in the field. In this study, the use of text-to-image generation to create a multiclass synthetic training dataset for inland navigation infrastructure is proposed, including damage of underwater structural components. Images of steel and concrete were generated that are representative of inland navigation infrastructure components. The images were labeled for semantic segmentation, and a model was trained using open-to-air and underwater scenes. The model trained using synthetic images was tested against field images, and the performance measured using recall, precision, and intersection over union was found to be comparable to a model trained using only field images. These results demonstrate that text-to-image generative AI tools were shown to be effective for generation of synthetic images with specifically defined conditions, saving time and cost, while providing a similar performance as the use of field-collected images. While intended for damage detection in large-scale civil infrastructure, this concept could be expanded to a number of areas as the generative AI models continue to improve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RLLLLLLL完成签到 ,获得积分10
23秒前
cdercder应助科研通管家采纳,获得20
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
dreamwalk完成签到 ,获得积分10
1分钟前
guangshuang完成签到 ,获得积分10
2分钟前
简奥斯汀完成签到 ,获得积分10
2分钟前
t铁核桃1985完成签到 ,获得积分10
3分钟前
波西米亚完成签到,获得积分10
3分钟前
眯眯眼的安雁完成签到 ,获得积分10
3分钟前
爱心完成签到 ,获得积分0
3分钟前
笨蛋美女完成签到 ,获得积分10
3分钟前
鲤鱼安青完成签到 ,获得积分10
4分钟前
baobeikk完成签到 ,获得积分10
4分钟前
微卫星不稳定完成签到 ,获得积分10
4分钟前
creep2020完成签到,获得积分10
4分钟前
cdercder应助科研通管家采纳,获得20
4分钟前
cdercder应助科研通管家采纳,获得20
4分钟前
cdercder应助科研通管家采纳,获得20
4分钟前
zhdjj完成签到 ,获得积分10
5分钟前
Xenia完成签到 ,获得积分10
5分钟前
楠楠2001完成签到 ,获得积分10
5分钟前
5分钟前
来玩的发布了新的文献求助10
5分钟前
可夫司机完成签到 ,获得积分10
5分钟前
jinghong完成签到 ,获得积分10
5分钟前
CRANE完成签到 ,获得积分10
5分钟前
yyx完成签到 ,获得积分10
6分钟前
有终完成签到 ,获得积分10
6分钟前
深情安青应助来玩的采纳,获得10
6分钟前
林利芳完成签到 ,获得积分10
6分钟前
和谐的夏岚完成签到 ,获得积分10
6分钟前
future完成签到 ,获得积分10
7分钟前
Christine完成签到,获得积分10
7分钟前
7分钟前
Christine发布了新的文献求助10
7分钟前
9分钟前
温柔觅松完成签到 ,获得积分10
9分钟前
Skywings完成签到,获得积分10
9分钟前
你才是小哭包完成签到 ,获得积分10
9分钟前
Solomon完成签到 ,获得积分0
10分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468