Temporal dynamics in laboratory medicine: cosinor analysis and real-world data (RWD) approaches to population chronobiology

时间生物学 动力学(音乐) 人口 计算机科学 数据科学 生物 昼夜节律 医学 神经科学 心理学 环境卫生 教育学
作者
Fernándo Marqués-García,Cristina Martinez-Bravo,Xavier Tejedor-Ganduxé,Rubén Fossión
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:63 (7): 1392-1401 被引量:1
标识
DOI:10.1515/cclm-2024-1198
摘要

Abstract Objectives Chronobiology is the science that studies biological rhythms based on direct methods and empirical time series of individual subjects. In laboratory medicine, the factor of time is often underestimated, and no methods currently exist to study biological rhythms in population databases of point-like, real-world data (RWD). Methods Retrospective databases (24 months, 2022–2023) were extracted for four measurands (sodium, potassium, chloride and leukocytes) from the emergency laboratory. Two different strategies for data grouping were applied: data clouds (with or without outliers) and population-averaged profiles. Cosinor regression analysis was performed on the grouped data to derive circadian parameters. The parameters obtained here were compared to results from the literature, using direct methods and time series. Results A total of 409,719 data points were analyzed. All measurands exhibited symmetrical data distributions, except for leukocytes. The data clouds did not visually display rhythmicity, but cosinor analysis revealed a significant circadian rhythm. The removal of outliers had minimal impact on the results. In contrast, population-averaged profiles showed visible rhythmicity, which was confirmed by cosinor analysis with a better goodness-of-fit compared to the data clouds. Conclusions Population-averaged profiles have advantages over data clouds in characterizing circadian rhythms and deriving circadian parameters. Population chronobiology, based on RWD, is presented as an alternative to classical individual chronobiology, based on time series and overcomes the limitations of direct methods. Utilizing RWD provides new insights into the relationship between chronobiology and clinical laboratory practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到,获得积分10
1秒前
勤奋努力完成签到 ,获得积分10
1秒前
2秒前
丘比特应助双丁宝贝采纳,获得10
3秒前
马凯鹏关注了科研通微信公众号
3秒前
3秒前
陶醉的水彤完成签到,获得积分10
4秒前
guoyufan发布了新的文献求助10
4秒前
5秒前
噜啦噜啦完成签到,获得积分20
5秒前
无奈笙发布了新的文献求助10
5秒前
陈科完成签到,获得积分20
5秒前
xixi完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
可爱的函函应助巧克力采纳,获得10
8秒前
那小子真帅完成签到,获得积分10
8秒前
8秒前
9秒前
xixi发布了新的文献求助30
9秒前
小兔发布了新的文献求助20
9秒前
77发布了新的文献求助10
9秒前
9秒前
陈科发布了新的文献求助10
12秒前
William发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
暗月皇发布了新的文献求助10
14秒前
14秒前
14秒前
汉堡包应助SonE采纳,获得10
14秒前
英姑应助机智向松采纳,获得10
15秒前
六六完成签到,获得积分10
17秒前
科研通AI6应助读书的时候采纳,获得10
17秒前
Moki完成签到,获得积分10
18秒前
英俊的铭应助楚子关采纳,获得10
18秒前
唠叨的若冰完成签到,获得积分10
19秒前
19秒前
今后应助刻苦的元菱采纳,获得10
19秒前
温柔发卡发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720530
求助须知:如何正确求助?哪些是违规求助? 5260834
关于积分的说明 15291524
捐赠科研通 4869955
什么是DOI,文献DOI怎么找? 2615129
邀请新用户注册赠送积分活动 1565084
关于科研通互助平台的介绍 1522191