Dynamic Localisation of Spatial-Temporal Graph Neural Network

计算机科学 图形 人工智能 神经科学 理论计算机科学 生物
作者
Wenying Duan,Shujun Guo,Wei Huang,Hong Rao,Xiaoxi He
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.04239
摘要

Spatial-temporal data, fundamental to many intelligent applications, reveals dependencies indicating causal links between present measurements at specific locations and historical data at the same or other locations. Within this context, adaptive spatial-temporal graph neural networks (ASTGNNs) have emerged as valuable tools for modelling these dependencies, especially through a data-driven approach rather than pre-defined spatial graphs. While this approach offers higher accuracy, it presents increased computational demands. Addressing this challenge, this paper delves into the concept of localisation within ASTGNNs, introducing an innovative perspective that spatial dependencies should be dynamically evolving over time. We introduce \textit{DynAGS}, a localised ASTGNN framework aimed at maximising efficiency and accuracy in distributed deployment. This framework integrates dynamic localisation, time-evolving spatial graphs, and personalised localisation, all orchestrated around the Dynamic Graph Generator, a light-weighted central module leveraging cross attention. The central module can integrate historical information in a node-independent manner to enhance the feature representation of nodes at the current moment. This improved feature representation is then used to generate a dynamic sparse graph without the need for costly data exchanges, and it supports personalised localisation. Performance assessments across two core ASTGNN architectures and nine real-world datasets from various applications reveal that \textit{DynAGS} outshines current benchmarks, underscoring that the dynamic modelling of spatial dependencies can drastically improve model expressibility, flexibility, and system efficiency, especially in distributed settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyiluo发布了新的文献求助10
刚刚
刚刚
简单完成签到,获得积分10
1秒前
1秒前
qiuyu发布了新的文献求助10
1秒前
卓隶应助yc采纳,获得10
3秒前
PROPELLER发布了新的文献求助10
4秒前
亚婷儿发布了新的文献求助10
4秒前
fhg发布了新的文献求助10
5秒前
5秒前
theThreeMagi完成签到,获得积分10
5秒前
6秒前
阿東完成签到 ,获得积分10
6秒前
CipherSage应助yiyiluo采纳,获得10
6秒前
木南南完成签到,获得积分10
6秒前
zyk完成签到 ,获得积分10
7秒前
8秒前
可爱的函函应助个性楷瑞采纳,获得10
8秒前
9秒前
宇文宛菡完成签到 ,获得积分10
10秒前
十页的文章完成签到,获得积分10
10秒前
迷路的惜霜完成签到,获得积分20
12秒前
英俊中心完成签到 ,获得积分10
12秒前
14秒前
所所应助lxd采纳,获得10
15秒前
16秒前
希望天下0贩的0应助cccc采纳,获得10
16秒前
17秒前
17秒前
20秒前
李玲玲完成签到,获得积分10
21秒前
缓慢采柳发布了新的文献求助10
21秒前
努力努力发布了新的文献求助10
21秒前
个性楷瑞发布了新的文献求助10
21秒前
24秒前
Akim应助阿司匹林采纳,获得20
24秒前
25秒前
欢欢发布了新的文献求助10
25秒前
25秒前
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807053
求助须知:如何正确求助?哪些是违规求助? 3351846
关于积分的说明 10356101
捐赠科研通 3067828
什么是DOI,文献DOI怎么找? 1684762
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765759