GFLearn: Generalized Feature Learning for Drug-Target Binding Affinity Prediction

计算机科学 人工智能 特征(语言学) 模式识别(心理学) 机器学习 语言学 哲学
作者
Zhenwei Huang,Xiaodi Weng,Le Ou-Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2025.3538497
摘要

Predicting drug-target binding affinity is critical for drug discovery, as it helps identify promising drug candidates and predict their effectiveness. Recent advancements in deep learning have made significant progress in tackling this task. However, existing methods heavily rely on training data, and their performance is often limited when predicting binding affinities for new drugs and targets. To address this challenge, we propose a novel Generalized Feature Learning (GFLearn) model for drug-target binding affinity prediction. By integrating Graph Neural Networks (GNNs) with a self-supervised invariant feature learning module, our GFLearn model can extract robust and highly generalizable features from both drugs and targets, significantly enhancing prediction performance. This innovation enables the model to effectively predict binding affinities for previously unseen drugs or targets, while also mitigates the common issue of prediction performance degrading due to shifts in data distribution. Extensive experiments were conducted on two diverse datasets across three challenging scenarios: new drugs, new targets, and combinations of both. Comparisons with state-of-the-art methods demonstrated that our GFLearn model consistently outperformed others, showcasing its robustness across various prediction tasks. Additionally, cross-dataset evaluations and noise perturbation experiments further validated the model's generalizability across different data distributions. Case studies on two drug-target pairs, Canertinib-PIK3C2G and MLN8054-FLT1, provided further evidence of GFLearn's ability to make accurate binding affinity predictions, offering valuable insights for drug screening and repurposing efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花城完成签到,获得积分10
1秒前
Hello应助酷炫的皮带采纳,获得10
1秒前
2秒前
315947发布了新的文献求助10
2秒前
Justin杨发布了新的文献求助10
3秒前
刘振岁发布了新的文献求助20
4秒前
4秒前
科目三应助丁的采纳,获得10
5秒前
b_wasky发布了新的文献求助10
5秒前
5秒前
cun发布了新的文献求助10
5秒前
5秒前
Robe发布了新的文献求助10
5秒前
6秒前
Cindy发布了新的文献求助10
6秒前
liu1239完成签到,获得积分10
7秒前
7秒前
wangchong发布了新的文献求助10
7秒前
科研通AI5应助Chambray采纳,获得10
8秒前
8秒前
cdp完成签到,获得积分20
9秒前
年轻寒蕾发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
SDNUDRUG发布了新的文献求助10
10秒前
德尔塔捱斯完成签到 ,获得积分10
10秒前
迅速谷云完成签到,获得积分20
11秒前
SYLH应助Allen采纳,获得10
12秒前
lily完成签到,获得积分10
12秒前
12秒前
12秒前
小蘑菇应助慧慧采纳,获得10
12秒前
隐形曼青应助正直的魔镜采纳,获得10
12秒前
沙卡拉卡完成签到,获得积分20
12秒前
13秒前
跳跃的惮发布了新的文献求助10
14秒前
outbed发布了新的文献求助10
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868