Embedding Guarantor: Knowledge-Enhanced Graph Learning for New Item Cold-Start Recommendation

嵌入 知识图 图形 冷启动(汽车) 计算机科学 人工智能 情报检索 理论计算机科学 工程类 航空航天工程
作者
Zhipeng Zhang,Y. S. Zhu,Mianxiong Dong,Kaoru Ota,Yao Zhang,Yonggong Ren
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tetci.2024.3516087
摘要

Graph neural networks (GNNs) are widely utilized in recommender systems because they can produce effective embeddings by incorporating high-order collaborative information from neighbors. However, traditional GNN-based recommendation approaches face limitations in the new item cold-start scenario. This is because new items typically have limited or no neighbors, resulting in incomplete or complete cold-start scenarios. In such cases, traditional GNNs struggle to generate high-quality embeddings due to limited neighbor information. To this end, we propose a Knowledge-Enhanced Graph Learning (KEGL) approach, which ensures the quality of embeddings for new items and further enables effective recommendations under cold-start scenarios. KEGL initially leverages semantic information from knowledge graph to parameterize each node and relation as vector representations. Then, KEGL introduces a knowledge-enhanced guaranteed embedding generator to produce a guaranteed embedding for each entity, which guarantees the embedding quality for each node during the convolution process, especially for cold-start items and their neighbors. Moreover, KEGL employs a knowledge-enhanced gated attention aggregator to capture high-order collaborative information and semantic representations based on the specific characteristics of each node, which guarantees the generation of distinctive embeddings for different types of nodes. Finally, the top $N$ un-interacted items with the highest predicted interaction probability are recommended to target users. Experimental results on two public datasets under cold-start scenarios demonstrate that KEGL outperforms state-of-the-art approaches in terms of new item cold-start recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁盼夏发布了新的文献求助10
2秒前
2秒前
3秒前
孤巷的猫完成签到,获得积分10
3秒前
脑洞疼应助Cody采纳,获得10
5秒前
CodeCraft应助Luna采纳,获得10
6秒前
7秒前
yaya发布了新的文献求助10
8秒前
忧郁盼夏完成签到,获得积分10
8秒前
juliar完成签到 ,获得积分10
9秒前
9秒前
ZhangXR完成签到,获得积分10
10秒前
cherylmax应助低温少年采纳,获得10
10秒前
luqong完成签到,获得积分10
11秒前
诚心代芙完成签到 ,获得积分10
13秒前
13秒前
汤浩宏发布了新的文献求助10
13秒前
科研通AI5应助裴仰纳采纳,获得10
13秒前
reliam发布了新的文献求助10
13秒前
科研通AI5应助七七采纳,获得10
13秒前
15秒前
15秒前
15秒前
快乐的夏岚完成签到,获得积分10
16秒前
18秒前
18秒前
EMMA完成签到,获得积分10
19秒前
xdh完成签到,获得积分10
20秒前
Luna发布了新的文献求助10
21秒前
英姑应助超能力采纳,获得10
21秒前
江脸脸完成签到,获得积分10
23秒前
Sandm完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
夜休2024完成签到 ,获得积分10
25秒前
研友_VZG7GZ应助栗子采纳,获得10
25秒前
houyajun发布了新的文献求助10
25秒前
25秒前
xiongxiaoli2000完成签到,获得积分10
25秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977850
求助须知:如何正确求助?哪些是违规求助? 3522015
关于积分的说明 11211196
捐赠科研通 3259254
什么是DOI,文献DOI怎么找? 1799573
邀请新用户注册赠送积分活动 878417
科研通“疑难数据库(出版商)”最低求助积分说明 806899