亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Embedding Guarantor: Knowledge-Enhanced Graph Learning for New Item Cold-Start Recommendation

嵌入 知识图 图形 冷启动(汽车) 计算机科学 人工智能 情报检索 理论计算机科学 工程类 航空航天工程
作者
Zhipeng Zhang,Y. S. Zhu,Mianxiong Dong,Kaoru Ota,Yao Zhang,Yonggong Ren
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tetci.2024.3516087
摘要

Graph neural networks (GNNs) are widely utilized in recommender systems because they can produce effective embeddings by incorporating high-order collaborative information from neighbors. However, traditional GNN-based recommendation approaches face limitations in the new item cold-start scenario. This is because new items typically have limited or no neighbors, resulting in incomplete or complete cold-start scenarios. In such cases, traditional GNNs struggle to generate high-quality embeddings due to limited neighbor information. To this end, we propose a Knowledge-Enhanced Graph Learning (KEGL) approach, which ensures the quality of embeddings for new items and further enables effective recommendations under cold-start scenarios. KEGL initially leverages semantic information from knowledge graph to parameterize each node and relation as vector representations. Then, KEGL introduces a knowledge-enhanced guaranteed embedding generator to produce a guaranteed embedding for each entity, which guarantees the embedding quality for each node during the convolution process, especially for cold-start items and their neighbors. Moreover, KEGL employs a knowledge-enhanced gated attention aggregator to capture high-order collaborative information and semantic representations based on the specific characteristics of each node, which guarantees the generation of distinctive embeddings for different types of nodes. Finally, the top $N$ un-interacted items with the highest predicted interaction probability are recommended to target users. Experimental results on two public datasets under cold-start scenarios demonstrate that KEGL outperforms state-of-the-art approaches in terms of new item cold-start recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
51秒前
54秒前
小蘑菇应助Xuxiaojun采纳,获得10
54秒前
1分钟前
1分钟前
Xuxiaojun发布了新的文献求助10
1分钟前
Xuxiaojun完成签到,获得积分20
1分钟前
朱朱子完成签到 ,获得积分10
1分钟前
1分钟前
板蓝根发布了新的文献求助10
1分钟前
科研通AI5应助板蓝根采纳,获得30
1分钟前
2分钟前
2分钟前
songjinyan829发布了新的文献求助10
2分钟前
terryok完成签到,获得积分10
2分钟前
2分钟前
2分钟前
艾七七发布了新的文献求助10
2分钟前
2分钟前
songjinyan829完成签到,获得积分10
2分钟前
艾七七完成签到,获得积分10
2分钟前
2分钟前
maher给maher的求助进行了留言
3分钟前
甜蜜乐松完成签到,获得积分10
3分钟前
李爱国应助甜蜜乐松采纳,获得10
3分钟前
mary完成签到 ,获得积分10
3分钟前
3分钟前
清修发布了新的文献求助10
4分钟前
SH123完成签到 ,获得积分10
4分钟前
小卒发布了新的文献求助10
4分钟前
Jj7发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
和谐的烙发布了新的文献求助10
5分钟前
热情金针菇完成签到,获得积分10
5分钟前
Alicia完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Ava应助伊可创采纳,获得30
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244117
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483