Automatic segmentation of pericardial adipose tissue from cardiac MR images via semi‐supervised method with difference‐guided consistency

分割 计算机科学 人工智能 一致性(知识库) 图像分割 尺度空间分割 模式识别(心理学) 计算机视觉 机器学习
作者
Xinru Zhang,Shoujun Zhou,Bohan Li,Yuanquan Wang,Ke Lü,Weipeng Liu,Zhida Wang
出处
期刊:Medical Physics [Wiley]
被引量:3
标识
DOI:10.1002/mp.17558
摘要

Abstract Background Accurate and automatic segmentation of pericardial adipose tissue (PEAT) in cardiac magnetic resonance (MR) images is essential for the diagnosis and treatment of cardiovascular diseases. Precise segmentation is challenging due to high costs and the need for specialized knowledge, as a large amount of accurately annotated data is required, demanding significant time and medical resources. Purpose In order to reduce the burden of data annotation while maintaining the high accuracy of segmentation tasks, this paper introduces a semi‐supervised learning method to solve the limitations of current PEAT segmentation methods. Methods In this paper, we propose a difference‐guided collaborative mean teacher (DCMT) semi‐supervised method, designed for the segmentation of PEAT from DCMT consists of two main components: a semi‐supervised framework with a difference fusion strategy and a backbone network MCM‐UNet using Mamba‐CNN mixture (MCM) blocks. The differential fusion strategy effectively utilizes the uncertain areas in unlabeled data, encouraging the model to reach a consensus in predictions across these difficult‐to‐segment yet information‐rich areas. In addition, considering the sparse and scattered distribution of PEAT in cardiac MR images, which makes it challenging to segment, we propose MCM‐UNet as the backbone network in our semi‐supervised framework. This not only enhances the processing ability of global information, but also accurately captures the detailed local features of the image, which greatly improves the accuracy of PEAT segmentation. Results Our experiments conducted on the MRPEAT dataset show that our DCMT method outperforms existing state‐of‐the‐art semi‐supervised methods in terms of segmentation accuracy. These findings underscore the effectiveness of our approach in handling the specific challenges associated with PEAT segmentation. Conclusions The DCMT method significantly improves the accuracy of PEAT segmentation in cardiac MR images. By effectively utilizing uncertain areas in the data and enhancing feature capture with the MCM‐UNet, our approach demonstrates superior performance and offers a promising solution for semi‐supervised learning in medical image segmentation. This method can alleviate the extensive annotation requirements typically necessary for training accurate segmentation models in medical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mhb发布了新的文献求助10
刚刚
1秒前
2秒前
3秒前
tnokp完成签到,获得积分10
3秒前
ZSJ完成签到,获得积分10
4秒前
4秒前
科研通AI6应助122采纳,获得10
5秒前
吴彦祖发布了新的文献求助10
6秒前
悦耳向露发布了新的文献求助10
6秒前
TZZZ发布了新的文献求助10
6秒前
Cope发布了新的文献求助30
7秒前
yyydd发布了新的文献求助10
7秒前
FFF完成签到,获得积分10
7秒前
星辰大海应助专注的背包采纳,获得10
8秒前
自行车v完成签到,获得积分10
8秒前
jzh发布了新的文献求助10
9秒前
dyx发布了新的文献求助10
10秒前
知然完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
lz完成签到 ,获得积分10
12秒前
一碗鱼发布了新的文献求助10
14秒前
NexusExplorer应助发光且犯二采纳,获得10
14秒前
彭于晏应助dildil采纳,获得10
14秒前
14秒前
王倩驳回了打打应助
14秒前
15秒前
ljl关闭了ljl文献求助
15秒前
liu完成签到,获得积分20
15秒前
霸气雯完成签到,获得积分10
17秒前
丘比特应助唯雷采纳,获得10
17秒前
yyydd完成签到,获得积分20
18秒前
wb发布了新的文献求助10
18秒前
18秒前
Nicole完成签到 ,获得积分10
21秒前
花花花花发布了新的文献求助10
21秒前
theverve发布了新的文献求助10
21秒前
田様应助一碗鱼采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581607
关于积分的说明 14381381
捐赠科研通 4510179
什么是DOI,文献DOI怎么找? 2471686
邀请新用户注册赠送积分活动 1458093
关于科研通互助平台的介绍 1431812