SIDISH integrates single-cell and bulk transcriptomics to identify high-risk cells and guide precision therapeutics through in silico perturbation

作者
Yasmin Jolasun,Kailu Song,Yumin Zheng,Jingtao Wang,Gregory J. Fonseca,David H. Eidelman,Jun Ding
出处
期刊:Nature Communications [Springer Nature]
标识
DOI:10.1038/s41467-025-66162-4
摘要

Single-cell RNA sequencing (scRNA-seq) provides high-resolution insights into cellular heterogeneity but remains costly, restricting its use to small cohorts that often lack comprehensive clinical data, reducing translational relevance. In contrast, bulk RNA sequencing is scalable and cost-effective but obscures critical single-cell insights. We introduce SIDISH, a neural network framework that integrates the granularity of scRNA-seq with the scalability of bulk RNA-seq. Using a variational autoencoder, deep Cox regression, and transfer learning, SIDISH identifies high-risk cell populations while enabling robust clinical predictions from large-cohort data. Its in silico perturbation module identifies therapeutic targets by simulating interventions that reduce high-risk cells associated with adverse outcomes. SIDISH also generalizes to spatial transcriptomics, identifying high-risk cells and mapping them within their native tissue microenvironment. Applied across diverse diseases, SIDISH establishes the link between cellular dynamics and clinical phenotypes, facilitating biomarker discovery and precision medicine. By unifying single-cell insights with large-scale clinical data, SIDISH advances computational tools for disease risk assessment and therapeutic prioritization, offering an integrative and scalable approach to precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
如意的从云完成签到,获得积分10
刚刚
哈哈哈哈发布了新的文献求助10
刚刚
1秒前
烟花应助忐忑的网络采纳,获得10
1秒前
stephanie21发布了新的文献求助10
1秒前
迷人的叫兽完成签到,获得积分20
1秒前
anna1992完成签到,获得积分10
2秒前
hizto完成签到,获得积分10
2秒前
javascript发布了新的文献求助10
2秒前
JAMA兜里揣完成签到,获得积分10
2秒前
1122334455完成签到,获得积分10
2秒前
3秒前
布丁发布了新的文献求助10
3秒前
dada发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
故意的青枫完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
zzzz完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
GPTea应助青春理想采纳,获得20
6秒前
李小光发布了新的文献求助10
6秒前
1122334455发布了新的文献求助10
7秒前
小蜗爬爬发布了新的文献求助10
7秒前
8秒前
ding应助Jarvi采纳,获得10
8秒前
桐桐应助Clarence采纳,获得10
8秒前
8秒前
半信美玉发布了新的文献求助10
8秒前
9秒前
javascript完成签到,获得积分10
9秒前
9秒前
9秒前
打打应助moyu123采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5491312
求助须知:如何正确求助?哪些是违规求助? 4589809
关于积分的说明 14427112
捐赠科研通 4521865
什么是DOI,文献DOI怎么找? 2477622
邀请新用户注册赠送积分活动 1462813
关于科研通互助平台的介绍 1435571