Characteristics, cost/effect consideration of clinical examinations, and construction of machine learning models of restrictive cardiomyopathyinsights from peking union medical college hospital

作者
An-tian Chen,Ligang Fang,Lin Xue,Wei Chen
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000003745
摘要

Background: Restrictive cardiomyopathy (RCM) is an uncommon condition with heterogeneous causes. Amyloidosis, a major subtype, presents with diagnostic complexity, economic burden, and prognostic implications. This study aimed to apply machine learning (ML) techniques to improve the diagnosis of amyloidosis among RCM patients and assess the cost-effectiveness of laboratory tests. Methods: This study included patients with RCM who underwent transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (MRI). Feature selection was performed using least absolute shrinkage and selection operator (LASSO) regression based on variables that showed statistically differences between groups. These selected features were then used to construct eight ML models, which were trained and validated using leave-one-out cross-validation. The best-performing model was evaluated for sample size and interpreted using Shapley additive explanations (SHAP) to enhance model transparency. Laboratory testing costs related to autoimmune, infectious, tumor-related, and amyloidosis evaluations were compared across subgroups. Results: The Random Forest (RF) model achieved the best performance, with an area under the curve (AUC) of 0.977, an accuracy of 0.908, a sensitivity of 0.869, and a specificity of 0.927. The model also showed a favorable Brier score and a satisfying effect size, indicating good performance in distinguishing amyloidosis from other RCM subtypes. Cost analysis revealed that patients without underlying autoimmune, infectious, or tumor-related etiologies incurred unnecessary expenditures. Multivariate regression identified key imaging features associated with amyloidosis, including left ventricular posterior wall (LVPW) and left ventricular ejection fraction (LVEF) from TTE, and left ventricular short axis (LVSA), LVEF, and interventricular septum (IVS) thickness from cardiac MRI. Conclusion: This study established an interpretable ML model based on the RF algorithm and accurately distinguished amyloidosis among RCM patients. By guiding more targeted use of amyloidosis-specific testing, the model offers a potential cost-saving strategy while improving diagnostic efficiency. These findings support the clinical integration of ML-based tools to streamline decision-making and optimize the allocation of healthcare resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wood发布了新的文献求助10
刚刚
刚刚
陈云凤完成签到,获得积分10
1秒前
琉璃果冻发布了新的文献求助10
1秒前
顾矜应助RC_Wang采纳,获得10
3秒前
Ted发布了新的文献求助10
3秒前
haishixigua发布了新的文献求助10
3秒前
Nic发布了新的文献求助10
4秒前
gecumk完成签到,获得积分10
4秒前
yuanshl1985发布了新的文献求助10
5秒前
5秒前
梓涵发布了新的文献求助10
5秒前
Z170发布了新的文献求助10
5秒前
wjx发布了新的文献求助10
5秒前
6秒前
感谢发布了新的文献求助10
7秒前
lingluo完成签到,获得积分10
8秒前
8秒前
钢镚大王发布了新的文献求助10
8秒前
阿艺完成签到,获得积分10
8秒前
共享精神应助honey采纳,获得10
8秒前
应绝施完成签到 ,获得积分10
9秒前
所所应助鱼王采纳,获得10
9秒前
99999999999完成签到,获得积分20
9秒前
10秒前
10秒前
tsuki完成签到 ,获得积分10
10秒前
Maestro_S应助陈云凤采纳,获得10
11秒前
11秒前
11秒前
11秒前
个性的南珍完成签到 ,获得积分10
11秒前
Ted完成签到,获得积分10
11秒前
12秒前
一诣一蓁发布了新的文献求助10
12秒前
惜风完成签到,获得积分10
12秒前
科研通AI6应助高艳采纳,获得10
12秒前
万能图书馆应助能干夏波采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261911
求助须知:如何正确求助?哪些是违规求助? 4423050
关于积分的说明 13768354
捐赠科研通 4297554
什么是DOI,文献DOI怎么找? 2358051
邀请新用户注册赠送积分活动 1354404
关于科研通互助平台的介绍 1315457