已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

YOLO-Fish: A robust fish detection model to detect fish in realistic underwater environment

计算机科学 水下 沿海鱼类 渔业 人工智能 环境科学 地理 珊瑚鱼 生物 考古
作者
Abdullah Al Muksit,Fakhrul Hasan,Md. Fahad Hasan Bhuiyan Emon,Md. Rakibul Haque,Arif Reza Anwary,Swakkhar Shatabda
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:72: 101847-101847 被引量:95
标识
DOI:10.1016/j.ecoinf.2022.101847
摘要

Over the last few years, several research works have been performed to monitor fish in the underwater environment aimed for marine research, understanding ocean geography, and primarily for sustainable fisheries. Automating fish identification is very helpful, considering the time and cost of the manual process. However, it can be challenging to differentiate fish from the seabed and fish types from each other due to environmental challenges like low illumination, complex background, high variation in luminosity, free movement of fish, and high diversity of fish species. In this paper, we propose YOLO-Fish, a deep learning based fish detection model. We have proposed two models, YOLO-Fish-1 and YOLO-Fish-2. YOLO-Fish-1 enhances YOLOv3 by fixing the issue of upsampling step sizes of to reduce the misdetection of tiny fish. YOLO-Fish-2 further improves the model by adding Spatial Pyramid Pooling to the first model to add the capability to detect fish appearance in those dynamic environments. To test the models, we introduce two datasets: DeepFish and OzFish. The DeepFish dataset contains around 15k bounding box annotations across 4505 images, where images belong to 20 different fish habitats. The OzFish is another dataset comprised of about 43k bounding box annotations of wide varieties of fish across around 1800 images. YOLO-Fish1 and YOLO-Fish2 achieved average precision of 76.56% and 75.70%, respectively for fish detection in unconstrained real-world marine environments, which is significantly better than YOLOv3. Both of these models are lightweight compared to recent versions of YOLO like YOLOv4, yet the performances are very similar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
njxray发布了新的文献求助20
1秒前
4秒前
初七123完成签到 ,获得积分10
4秒前
4秒前
猪猪发布了新的文献求助10
5秒前
5秒前
神勇的小白菜完成签到,获得积分10
5秒前
iNk应助鹿lu采纳,获得20
6秒前
研友_VZG7GZ应助武雨寒采纳,获得10
6秒前
开心瑾瑜发布了新的文献求助10
8秒前
8秒前
马华化完成签到,获得积分0
8秒前
zhitong完成签到,获得积分10
9秒前
9秒前
11秒前
13秒前
13秒前
胡诗剑发布了新的文献求助10
14秒前
缓慢思枫发布了新的文献求助10
15秒前
Jungel完成签到,获得积分0
15秒前
zoey发布了新的文献求助10
17秒前
嗨Honey发布了新的文献求助10
18秒前
2568269431发布了新的文献求助10
19秒前
李健应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
mkeale应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
AriseChen应助科研通管家采纳,获得50
21秒前
Ava应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
22秒前
5易6完成签到 ,获得积分10
22秒前
共享精神应助zoey采纳,获得10
23秒前
kimon发布了新的文献求助10
24秒前
羅马完成签到 ,获得积分10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Topological Quantum Computing 300
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346205
关于积分的说明 10328539
捐赠科研通 3062682
什么是DOI,文献DOI怎么找? 1681143
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646