YOLO-Fish: A robust fish detection model to detect fish in realistic underwater environment

计算机科学 水下 沿海鱼类 渔业 人工智能 环境科学 地理 珊瑚鱼 生物 考古
作者
Abdullah Al Muksit,Fakhrul Hasan,Md. Fahad Hasan Bhuiyan Emon,Md. Rakibul Haque,Arif Reza Anwary,Swakkhar Shatabda
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:72: 101847-101847 被引量:116
标识
DOI:10.1016/j.ecoinf.2022.101847
摘要

Over the last few years, several research works have been performed to monitor fish in the underwater environment aimed for marine research, understanding ocean geography, and primarily for sustainable fisheries. Automating fish identification is very helpful, considering the time and cost of the manual process. However, it can be challenging to differentiate fish from the seabed and fish types from each other due to environmental challenges like low illumination, complex background, high variation in luminosity, free movement of fish, and high diversity of fish species. In this paper, we propose YOLO-Fish, a deep learning based fish detection model. We have proposed two models, YOLO-Fish-1 and YOLO-Fish-2. YOLO-Fish-1 enhances YOLOv3 by fixing the issue of upsampling step sizes of to reduce the misdetection of tiny fish. YOLO-Fish-2 further improves the model by adding Spatial Pyramid Pooling to the first model to add the capability to detect fish appearance in those dynamic environments. To test the models, we introduce two datasets: DeepFish and OzFish. The DeepFish dataset contains around 15k bounding box annotations across 4505 images, where images belong to 20 different fish habitats. The OzFish is another dataset comprised of about 43k bounding box annotations of wide varieties of fish across around 1800 images. YOLO-Fish1 and YOLO-Fish2 achieved average precision of 76.56% and 75.70%, respectively for fish detection in unconstrained real-world marine environments, which is significantly better than YOLOv3. Both of these models are lightweight compared to recent versions of YOLO like YOLOv4, yet the performances are very similar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助掮客采纳,获得10
刚刚
陈艳林发布了新的文献求助10
刚刚
风希发布了新的文献求助20
刚刚
Ava应助地学韦丰吉司长采纳,获得10
1秒前
1秒前
有志不在年糕完成签到,获得积分10
1秒前
复杂数据线完成签到,获得积分10
1秒前
hhh完成签到,获得积分10
1秒前
guozizi发布了新的文献求助20
1秒前
浮游应助追寻紫安采纳,获得10
2秒前
xiaoyao完成签到,获得积分10
2秒前
123zyuyu发布了新的文献求助10
3秒前
陈pc完成签到,获得积分10
3秒前
hony发布了新的文献求助10
3秒前
4秒前
Yanxb完成签到,获得积分10
4秒前
4秒前
4秒前
zz发布了新的文献求助10
4秒前
4秒前
付威威完成签到,获得积分10
5秒前
在水一方应助德芙采纳,获得10
5秒前
5秒前
白芷当归举报量子星尘求助涉嫌违规
5秒前
qiqi发布了新的文献求助10
6秒前
6秒前
爆米花应助火龙果采纳,获得30
6秒前
青柏发布了新的文献求助10
6秒前
搜集达人应助张丁采纳,获得10
7秒前
Ceaser完成签到,获得积分10
8秒前
8秒前
共享精神应助菠萝采纳,获得10
8秒前
Yanxb发布了新的文献求助10
8秒前
8秒前
zhuhaot发布了新的文献求助50
8秒前
百里伟祺完成签到 ,获得积分10
9秒前
cherish完成签到,获得积分10
9秒前
无奈的鞋子完成签到,获得积分10
9秒前
传奇3应助纯真冰露采纳,获得10
9秒前
SYMI发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
A Systemic-Functional Study of Language Choice in Singapore 550
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4872145
求助须知:如何正确求助?哪些是违规求助? 4162064
关于积分的说明 12908552
捐赠科研通 3918456
什么是DOI,文献DOI怎么找? 2151375
邀请新用户注册赠送积分活动 1169773
关于科研通互助平台的介绍 1073515