清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Progress and Trends in Damage Detection Methods, Maintenance, and Data-driven Monitoring of Wind Turbine Blades – A Review

涡轮机 可再生能源 结构健康监测 涡轮叶片 工程类 风力发电 无损检测 可靠性工程 状态监测 机械工程 结构工程 电气工程 医学 放射科
作者
Kyungil Kong,Kirsten Dyer,Christopher J. Payne,Ian Hamerton,Paul M. Weaver
出处
期刊:Renewable Energy Focus [Elsevier]
卷期号:44: 390-412 被引量:79
标识
DOI:10.1016/j.ref.2022.08.005
摘要

In recent decades, renewable energy has attracted attention as a viable energy supply. Among renewable energy sources, offshore wind energy has been considerably growing since longer and larger wind turbine composite blades were deployed. The manufacture of the longer and larger composite blades leads to more wind energy production. However, the wind turbine composite blades are susceptible to damage and defects due to multiple structural loads and harsh operating environments in service. Hence, condition monitoring and maintenance of wind turbine composite blades require in-depth investigation to prevent structural damage and defects and to improve remaining lifetime of the composite structure. The types of damage and defects in wind turbine composite blades are typically delamination, debonding, and cracks, which are influenced by the intrinsic structural nonlinearities, manufacturing process stage, and harsh environmental impacts in service. For these reasons, the regular condition monitoring of the composite blades is required to assess degradation in performance and structural condition to minimise levelised energy costs for maintenance. To improve reliability and sustainability, data-driven inspection with digital twin technology is reviewed as a trend of condition monitoring frameworks. Advanced functional materials to potentially assist current non-destructive testing (NDT) methods or to be utilised as self-sensing performance are reviewed. From manufacturing to the system level, a comprehensive review on progress and trends of monitoring of wind turbine composite blades is carried out including physics-based NDT methods, data fusion in sensor networks, automated system, mechanics, and digital twin technology with the environmental coupling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助武雨寒采纳,获得10
2秒前
Aurora完成签到 ,获得积分10
2秒前
4秒前
14秒前
阿瑞完成签到 ,获得积分10
15秒前
辛夷完成签到,获得积分10
16秒前
alho完成签到 ,获得积分10
19秒前
任伟超发布了新的文献求助10
20秒前
yang完成签到 ,获得积分10
28秒前
kenchilie完成签到 ,获得积分10
31秒前
相爱就永远在一起完成签到,获得积分10
33秒前
柯伊达完成签到 ,获得积分10
34秒前
36秒前
平凡世界完成签到 ,获得积分10
39秒前
武雨寒发布了新的文献求助10
39秒前
wBw完成签到,获得积分10
45秒前
54秒前
科研雪瑞发布了新的文献求助10
57秒前
科目三应助任伟超采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
cdercder应助科研雪瑞采纳,获得10
1分钟前
如泣草芥完成签到,获得积分10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
1分钟前
大侠发布了新的文献求助10
1分钟前
像猫的狗完成签到 ,获得积分10
1分钟前
科研雪瑞完成签到,获得积分10
1分钟前
1分钟前
可爱以松完成签到,获得积分10
1分钟前
大侠发布了新的文献求助10
1分钟前
luckygirl完成签到 ,获得积分10
1分钟前
合适的寄灵完成签到 ,获得积分10
1分钟前
tlh完成签到 ,获得积分10
1分钟前
jibenkun完成签到,获得积分10
1分钟前
波波完成签到 ,获得积分10
1分钟前
淡定无施完成签到,获得积分10
1分钟前
1111完成签到 ,获得积分10
1分钟前
大侠发布了新的文献求助10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833895
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704730
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859