亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production

催化作用 杂原子 电催化剂 纳米技术 贵金属 材料科学 电化学 化学 有机化学 电极 戒指(化学) 物理化学
作者
Jae Hyung Kim,Young Jin,Taejung Lim,Jinwoo Woo,Sang Hoon Joo
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (18): 2672-2684 被引量:20
标识
DOI:10.1021/acs.accounts.2c00409
摘要

Electrocatalysis is a key driver in promoting the paradigm shift from the current fossil-fuel-based hydrocarbon economy to a renewable-energy-driven hydrogen economy. The success of electrocatalysis hinges primarily on achieving high catalytic selectivity along with maximum activity and sustained longevity. Many electrochemical reactions proceed through multiple pathways, requiring highly selective catalysts.Atomically dispersed metal catalysts have emerged as a new frontier in heterogeneous catalysis. In addition to the widely perceived advantages of maximized active site utilization and substantially reduced metal content, they have shown different catalytic selectivities in some electrocatalytic reactions compared to the traditional nanoparticle (NP)-based catalysts. Although there have been significant advances in their synthesis, the highly energetic nature of a single atomic site has made the preparation of atomically dispersed metal catalysts rely on empiricism rather than rational design. Consequently, the structural comprehension of a single atomic site and the understanding of its unusual electrocatalytic selectivity remain largely elusive.In this Account, we describe our endeavors toward developing general synthetic approaches for atomically dispersed metal catalysts for the discovery of new selective and active electrocatalysts and to understand their catalytic nature. We introduce synthetic approaches to produce a wide range of nonprecious- and precious-metal-based atomically dispersed catalysts and control their coordination environments. Metallomacrocyclic-compound-driven top-down and metal salt/heteroatom layer-based bottom-up strategies, coupled with a SiO2-protective-layer-assisted method, have been developed that can effectively generate single atomic sites while mitigating the formation of metallic NPs. The low-temperature gas-phase ligand exchange method can reversibly tune the coordination structure of the atomically dispersed metal sites. We have used the prepared atomically dispersed metal catalysts as model systems to investigate their electrocatalytic reactivity for renewable energy conversion and commodity chemical production reactions, in which high selectivity is important. The reactions of our interest include the following: (i) the oxygen reduction reaction, where O2 is reduced to either H2O or H2O2 via the four-electron or two electron pathway, respectively; (ii) the CO2 reduction reaction, which should suppress the hydrogen evolution reaction; and (iii) the chlorine evolution reaction, which competes with the oxygen evolution reaction. The type of metal center to which the reactant is directly bound is found to be the most important in determining the selectivity, which originates from the dramatic changes in the binding energy of each metal center with the reactants. The coordination structure surrounding the metal center also has a significant effect on the selectivity; its control can modulate the oxidation state of the metal center, thereby altering the binding strength with the reactants.We envisage that future advances in the synthesis of atomically dispersed metal catalysts, combined with the growing power of computational, spectroscopic, and microscopic methods, will bring their synthesis to the level of rational design. Elaborately designed catalysts can overcome the current limits of catalytic selectivity, which will help establish the field of atomically dispersed metal catalysts as an important branch of catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
平常惜海完成签到,获得积分10
5秒前
无私的蛋挞完成签到,获得积分10
26秒前
lz完成签到 ,获得积分10
28秒前
zhuang发布了新的文献求助10
35秒前
斯文梦寒完成签到 ,获得积分10
39秒前
wo完成签到 ,获得积分10
40秒前
开心每一天完成签到 ,获得积分10
53秒前
颖宝老公完成签到,获得积分0
55秒前
stop here完成签到,获得积分10
58秒前
年鱼精完成签到 ,获得积分10
1分钟前
Wang完成签到 ,获得积分20
1分钟前
1分钟前
wency发布了新的文献求助10
1分钟前
淡定的安柏完成签到,获得积分10
1分钟前
wiwia完成签到,获得积分10
1分钟前
cyj完成签到 ,获得积分10
1分钟前
kdjm688完成签到,获得积分10
1分钟前
1分钟前
王某人完成签到 ,获得积分10
1分钟前
wiwia关注了科研通微信公众号
1分钟前
俏皮的老城完成签到 ,获得积分10
1分钟前
bc应助科研通管家采纳,获得20
1分钟前
HT应助科研通管家采纳,获得50
1分钟前
HT应助科研通管家采纳,获得10
1分钟前
青春完成签到 ,获得积分10
1分钟前
故意的傲柏完成签到 ,获得积分10
1分钟前
wlei完成签到,获得积分10
2分钟前
shaylie完成签到 ,获得积分10
2分钟前
monster完成签到 ,获得积分10
2分钟前
招水若离完成签到,获得积分0
2分钟前
那那发布了新的文献求助10
2分钟前
明眸完成签到 ,获得积分10
2分钟前
wency发布了新的文献求助10
2分钟前
温柔的夜柳完成签到,获得积分10
2分钟前
wyx完成签到 ,获得积分10
2分钟前
2分钟前
mostspecial完成签到,获得积分10
2分钟前
多味花生发布了新的文献求助10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779029
求助须知:如何正确求助?哪些是违规求助? 3324712
关于积分的说明 10219533
捐赠科研通 3039750
什么是DOI,文献DOI怎么找? 1668400
邀请新用户注册赠送积分活动 798648
科研通“疑难数据库(出版商)”最低求助积分说明 758487