质子交换膜燃料电池
超球体
计算机科学
燃料电池
断层(地质)
支持向量机
半径
电压
特征向量
阴极
数据挖掘
算法
控制理论(社会学)
工程类
人工智能
化学工程
地质学
电气工程
地震学
控制(管理)
计算机安全
作者
Jingjing Lu,Yan Gao,Luyu Zhang,Hanzhi Deng,Jishen Cao,Jian Bai
标识
DOI:10.1016/j.ijhydene.2022.08.145
摘要
Timely fault detection is critical to improving the reliability and durability of the proton exchange membrane fuel cell (PEMFC) system. This paper proposes a novel fault diagnosis method, dynamic radius support vector data description (DR-SVDD), to efficiently identify the PEMFC system's faults. Compared to the classic support vector data description (SVDD) and improved SVDDs, this method considers both the SVDD hypersphere radius information and the distribution characteristics of the training set samples to obtain a more accurate and adequate description of the sample data. The cell voltages and the pressure drops at the cathode and anode obtained experimentally under various fault conditions are chosen as the feature variables for the PEMFC fault diagnosis. The comparative results show that the proposed DR-SVDD strategy performs well in fault class identification for a PEMFC system.
科研通智能强力驱动
Strongly Powered by AbleSci AI