Mineral prospectivity mapping using attention-based convolutional neural network

远景图 卷积神经网络 矿产勘查 模式识别(心理学) 计算机科学 人工智能 地质学 数据挖掘 地球化学 地貌学 构造盆地
作者
Quanke Li,Guoxiong Chen,Lei Luo
出处
期刊:Ore Geology Reviews [Elsevier BV]
卷期号:156: 105381-105381 被引量:26
标识
DOI:10.1016/j.oregeorev.2023.105381
摘要

Data-driven mineral prospectivity mapping (MPM) based on deep learning methods has become a powerful tool for mineral exploration targeting in the past years. Convolutional neural networks (CNNs) have shown great success in this field because of their powerful ability to capture the complex spatial geo-anomalies related to mineralization. However, the exploration big data applied to MPM mainly relies on the high dimensions of evidence layers (other than spatial dimensions), namely, a large number of channels. This impedes the extraction of key channel features related to mineralization when using traditional CNNs. In this paper, we developed an ensemble MPM method based on CNN and Attention model: the ATT–CNN method. Specifically, a channel attention layer is added after the convolution operation of the CNN to enhance the extraction of key channel features in complex exploration data, thereby improving the feature extraction ability and prediction accuracy of CNN for MPM. A case study of W–Sn mineral prospectivity modeling in the Nanling metallogenic belt in South China was used to verify the proposed method. To alleviate the issue of training sample scarcity, we used data augmentation methods (including sliding window and random zero noise addition) when training CNN models. The results show that the prediction accuracies of the ATT–CNN model (92.949% and 94.872% using sliding window and random zero noise addition, respectively) are higher than those of the traditional CNN (91.667% and 92.308%, respectively). Moreover, the improved areas under the receiver operating characteristic curves (AUC) of ATT–CNN (0.987 and 0.971) compared to those of the CNN (0.970 and 0.964) suggest that the proposed ensemble method improves the geological generalization of CNN. The high agreement with known deposits suggests that the areas targeted in this study can guide future mineral exploration of the W–Sn mineralization in the Nanling range.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的天真完成签到 ,获得积分10
2秒前
慧仔53发布了新的文献求助10
3秒前
我爱学习完成签到,获得积分10
3秒前
爆米花应助张建威采纳,获得10
4秒前
萝卜完成签到 ,获得积分10
6秒前
WILD完成签到 ,获得积分10
6秒前
成就绮琴完成签到 ,获得积分10
12秒前
光亮白山完成签到 ,获得积分10
14秒前
云烟成雨完成签到,获得积分10
16秒前
磊2024完成签到,获得积分10
17秒前
18秒前
zx完成签到 ,获得积分10
21秒前
嘻嘻哈哈完成签到 ,获得积分10
21秒前
张建威发布了新的文献求助10
25秒前
gdgd完成签到,获得积分10
25秒前
Lan完成签到 ,获得积分10
25秒前
慧仔53发布了新的文献求助10
25秒前
未晚完成签到 ,获得积分10
27秒前
鸡蛋叉烧肠完成签到 ,获得积分10
31秒前
FashionBoy应助Stanford采纳,获得10
36秒前
xiaoputaor完成签到 ,获得积分10
41秒前
爱笑凤凰完成签到,获得积分10
45秒前
一脉香完成签到 ,获得积分10
45秒前
46秒前
可莉完成签到 ,获得积分10
46秒前
qian完成签到 ,获得积分10
47秒前
冰糖葫芦完成签到 ,获得积分10
47秒前
小恐龙飞飞完成签到 ,获得积分10
48秒前
小悟空的美好年华完成签到 ,获得积分10
50秒前
Stanford完成签到,获得积分10
50秒前
qqshown完成签到,获得积分10
51秒前
唐禹嘉完成签到 ,获得积分10
51秒前
科研通AI5应助BUAAzmt采纳,获得10
52秒前
abcdefg完成签到,获得积分10
52秒前
胡图图完成签到,获得积分10
53秒前
Stanford发布了新的文献求助10
53秒前
shawfang完成签到,获得积分10
55秒前
听闻韬声依旧完成签到 ,获得积分10
56秒前
fengmian完成签到,获得积分10
56秒前
小土豆完成签到 ,获得积分10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323216
关于积分的说明 10213166
捐赠科研通 3038523
什么是DOI,文献DOI怎么找? 1667522
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275