自旋电子学
磁化
反平行(数学)
材料科学
凝聚态物理
磁电效应
磁性
偶极子
隧道磁电阻
铁电性
磁场
铁磁性
光电子学
物理
多铁性
电介质
量子力学
作者
Aitian Chen,Ren‐Ci Peng,Bin Fang,Tiannan Yang,Yan Wen,Dongxing Zheng,Chenhui Zhang,Chen Liu,Zibin Li,Peisen Li,Yan Li,Yonggang Zhao,Ce‐Wen Nan,Z. Q. Qiu,Long‐Qing Chen,Xixiang Zhang
标识
DOI:10.1002/adfm.202213402
摘要
Abstract The magnetoelectric effect is technologically appealing because of its ability to manipulate magnetism using an electric field rather than magnetic field or current, thus providing a promising solution for the development of energy‐efficient spintronics. Although 180° magnetization switching is vital to spintronic devices, the achievement of 180° magnetization switching via magnetoelectric coupling is still a fundamental challenge. Herein, voltage‐driven full resistance switching of a magnetic tunnel junction (MTJ) with dipole interaction on a ferroelectric substrate through switchable parallel/antiparallel magnetization alignment is demonstrated. Parallel magnetization alignment along the y direction is obtained under a bias magnetic field. By rotating the magnetic easy axis via strain‐mediated magnetoelectric coupling, the parallel magnetizations in the MTJ reorient to the x axis with opposite paths because of dipole interaction, thus resulting in antiparallel alignment. Moreover, this voltage switching of MTJs is nonvolatile owing to variations in dipole interaction and can be well understood via phase field simulations. The results provide an avenue to realize electrical switching of MTJs and are significant for exploring energy‐efficient spintronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI