Cross-domain landslide mapping from large-scale remote sensing images using prototype-guided domain-aware progressive representation learning

计算机科学 判别式 人工智能 代表(政治) 特征学习 特征(语言学) 卷积神经网络 山崩 领域(数学分析) 边界(拓扑) 模式识别(心理学) 一般化 遥感 地理 地质学 数学 语言学 哲学 岩土工程 数学分析 政治 政治学 法学
作者
Xiaokang Zhang,Weikang Yu,Man-On Pun,Wenzhong Shi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:197: 1-17 被引量:117
标识
DOI:10.1016/j.isprsjprs.2023.01.018
摘要

Landslide mapping via pixel-wise classification of remote sensing imagery is essential for hazard prevention and risk assessment. Deep-learning-based change detection greatly aids landslide mapping by identifying the down-slope movement of soil, rock and other materials from bitemporal images, benefiting from the feature representation capabilities of convolutional neural networks. However, these networks rely on large amounts of pixel-level annotated data to achieve their promising performance and they normally exhibit weak generalization capability on heterogeneous image data from unseen domains. To address these issues, we propose a prototype-guided domain-aware progressive representation learning (PG-DPRL) method for cross-domain landslide mapping from large-scale remote sensing images based on the multitarget domain adaptation (MTDA) technique. PG-DPRL attempts to learn a shared landslide mapping network that performs well in multiple target domains with no additional effort for sample annotation. Specifically, PG-DPRL adopts a near-to-far adaptation strategy to gradually align the representation distributions of all target domains with the source domain, considering discrepancies between them. On this basis, cross-domain prototype learning is exploited to generate reliable domain-specific pseudo-labels and aggregate representations across domains to learn a shared decision boundary. In each DPRL step, the prototype-guided adversarial learning (PGAL) algorithm is performed to achieve category-wise representation alignment and improve the discriminative capability of representations by introducing the Wasserstein distance metric and cross-domain prototype consistency (CPC) loss. Experiments on a global very-high-resolution landslide mapping (GVLM) dataset consisting of 17 heterogeneous domains from different landslide sites demonstrate the effectiveness and robustness of PG-DPRL. It considerably improves the transferability of landslide mapping networks and outperforms several state-of-the-art approaches in terms of total and average accuracy metrics among all target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11110发布了新的文献求助20
刚刚
刚刚
RQ完成签到 ,获得积分10
刚刚
QIAN发布了新的文献求助10
刚刚
刚刚
tree发布了新的文献求助10
1秒前
mumuaidafu发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
星球日记发布了新的文献求助10
4秒前
夺将发布了新的文献求助10
4秒前
桐桐应助婷婷婷不停采纳,获得10
5秒前
CR7应助崔崔采纳,获得20
5秒前
ding应助xu采纳,获得10
5秒前
6秒前
6秒前
李健的小迷弟应助Jane采纳,获得10
6秒前
6秒前
6秒前
阿斯顿完成签到,获得积分10
7秒前
7秒前
天真有邪完成签到,获得积分10
7秒前
烂漫百招发布了新的文献求助10
7秒前
liamddd完成签到,获得积分10
8秒前
结实的月光完成签到 ,获得积分10
8秒前
八九发布了新的文献求助10
9秒前
9秒前
9秒前
冷彬发布了新的文献求助10
10秒前
10秒前
12秒前
Desheng发布了新的文献求助10
12秒前
cccttt发布了新的文献求助10
12秒前
cc发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
Angelina应助朱晖采纳,获得10
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300