PoetryBERT: Pre-training with Sememe Knowledge for Classical Chinese Poetry

诗歌 计算机科学 文言文 中国诗歌 构造(python库) 中国古典诗歌 主题(计算) 人工智能 文学类 自然语言处理 语言学 哲学 艺术 万维网 程序设计语言
作者
Jiaqi Zhao,Ting Bai,Yuting Wei,Bin Wu
出处
期刊:Communications in computer and information science 卷期号:: 369-384 被引量:5
标识
DOI:10.1007/978-981-19-8991-9_26
摘要

Classical Chinese poetry has a history of thousands of years and is a precious cultural heritage of humankind. Compared with the modern Chinese corpus, it is irrecoverable and specially organized, making it difficult to be learned by existing pre-trained language models. Besides, with the thousands of years of development, many words in classical Chinese poetry have changed their meanings or been out of use today, which further limiting the capability of existing pre-trained models to learn the semantics of classical Chinese poetry. To address these challenges, we construct a large-scale sememe knowledge graph of classical Chinese Poetry (SKG-Poetry), which connects the vocabularies in classical Chinese poetry and modern Chinese. By extracting the sememe knowledge from classical Chinese poetry, our model PoetryBERT not only enlarges the irrecoverable pre-training corpus but also enriches the semantics of the vocabularies in classical Chinese poetry, which enables PoetryBERT to be successfully used in downstream tasks. Specifically, we evaluate our model in two tasks in the field of Chinese classical poetry, which are poetry theme classification and poetry-modern Chinese translation. Extensive experiments are conducted on the two tasks to show the effectiveness of sememe knowledge based pre-training model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助自信彩虹采纳,获得30
刚刚
1秒前
1秒前
Sevendesu发布了新的文献求助30
1秒前
咕咕完成签到,获得积分10
1秒前
奋斗的老牛完成签到,获得积分10
2秒前
4秒前
思絮完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
浮游应助Lin采纳,获得10
7秒前
孙豪泽完成签到,获得积分10
7秒前
倪妮发布了新的文献求助10
8秒前
8秒前
8秒前
无花果应助好事要发生采纳,获得10
8秒前
9秒前
小夹子完成签到 ,获得积分10
9秒前
帅气天荷完成签到 ,获得积分10
9秒前
10秒前
H_H发布了新的文献求助10
11秒前
犹豫觅露发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
科研通AI6应助快乐的朱朱采纳,获得10
12秒前
13秒前
ACE发布了新的文献求助10
14秒前
ccy关注了科研通微信公众号
14秒前
15秒前
科目三应助机智绝悟采纳,获得10
16秒前
16秒前
LL发布了新的文献求助10
16秒前
CipherSage应助科研通管家采纳,获得10
18秒前
七大洋的风完成签到,获得积分10
18秒前
科研通AI6应助科研通管家采纳,获得100
18秒前
烟花应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073477
求助须知:如何正确求助?哪些是违规求助? 4293605
关于积分的说明 13378934
捐赠科研通 4114986
什么是DOI,文献DOI怎么找? 2253333
邀请新用户注册赠送积分活动 1258119
关于科研通互助平台的介绍 1191028