A Mapless Local Path Planning Approach Using Deep Reinforcement Learning Framework

强化学习 运动规划 计算机科学 路径(计算) 规划师 避障 人工智能 机器人 移动机器人 钥匙(锁) 障碍物 数学优化 数学 计算机安全 程序设计语言 法学 政治学
作者
Yan Yin,Zhiyu Chen,Gang Liu,Jianwei Guo
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (4): 2036-2036 被引量:19
标识
DOI:10.3390/s23042036
摘要

The key module for autonomous mobile robots is path planning and obstacle avoidance. Global path planning based on known maps has been effectively achieved. Local path planning in unknown dynamic environments is still very challenging due to the lack of detailed environmental information and unpredictability. This paper proposes an end-to-end local path planner n-step dueling double DQN with reward-based ϵ-greedy (RND3QN) based on a deep reinforcement learning framework, which acquires environmental data from LiDAR as input and uses a neural network to fit Q-values to output the corresponding discrete actions. The bias is reduced using n-step bootstrapping based on deep Q-network (DQN). The ϵ-greedy exploration-exploitation strategy is improved with the reward value as a measure of exploration, and an auxiliary reward function is introduced to increase the reward distribution of the sparse reward environment. Simulation experiments are conducted on the gazebo to test the algorithm's effectiveness. The experimental data demonstrate that the average total reward value of RND3QN is higher than that of algorithms such as dueling double DQN (D3QN), and the success rates are increased by 174%, 65%, and 61% over D3QN on three stages, respectively. We experimented on the turtlebot3 waffle pi robot, and the strategies learned from the simulation can be effectively transferred to the real robot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小旭不会飞完成签到,获得积分10
2秒前
Tingshan发布了新的文献求助10
2秒前
无为给无为的求助进行了留言
3秒前
3秒前
4秒前
坚定雍完成签到,获得积分20
5秒前
嘚嘚完成签到,获得积分10
5秒前
星海梦幻完成签到 ,获得积分10
8秒前
桐桐应助Demon采纳,获得10
8秒前
烟花应助谨慎冰薇采纳,获得10
9秒前
duoduo发布了新的文献求助10
9秒前
9秒前
坦率的依风完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
入戏太深发布了新的文献求助10
14秒前
coolkid应助一年生黑麦草采纳,获得10
15秒前
17秒前
21秒前
21秒前
victor266发布了新的文献求助40
21秒前
22秒前
Demon发布了新的文献求助10
22秒前
语霖仙完成签到,获得积分10
23秒前
酷酷语兰完成签到,获得积分10
23秒前
Yatpome完成签到,获得积分10
25秒前
LS完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
bless完成签到,获得积分10
26秒前
图雄争霸发布了新的文献求助10
27秒前
谨慎冰薇发布了新的文献求助10
28秒前
贾小云发布了新的文献求助10
29秒前
安安完成签到 ,获得积分10
29秒前
jin发布了新的文献求助10
30秒前
义气谷兰完成签到,获得积分10
32秒前
健壮听露发布了新的文献求助10
33秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3945099
求助须知:如何正确求助?哪些是违规求助? 3490051
关于积分的说明 11054827
捐赠科研通 3221043
什么是DOI,文献DOI怎么找? 1780381
邀请新用户注册赠送积分活动 865347
科研通“疑难数据库(出版商)”最低求助积分说明 799850