石墨烯
铂金
质子交换膜燃料电池
材料科学
催化作用
多孔性
铂纳米粒子
化学工程
电化学
阴极
纳米技术
化学
复合材料
电极
有机化学
物理化学
工程类
作者
Zuqiao Ou,Zhao An,Zhong Ma,Nan Li,Yinuo Han,Ganjun Yang,Qike Jiang,Qiang Chen,Wenling Chu,Suli Wang,Tongwen Yu,Weishen Yang
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2023-01-17
卷期号:13 (3): 1856-1862
被引量:16
标识
DOI:10.1021/acscatal.2c05613
摘要
Ultralow platinum loading and high electrocatalytic performance at the cathode are critical to lower costs of proton-exchange membrane fuel cells (PEMFCs). Encaging platinum catalysts into pore channels by geometric constraints and chemical interactions can orchestrate spatial organization, stabilize multitype sites, minimize platinum loading, and resist surface poisoning. Here, we report the design and synthesis of encaging platinum single atoms and ultrafine nanoparticles to periodic nanopores of three-dimensional graphene-like architecture carbon by a transformative strategy. The PEMFC with such unique cathodic configuration at an ultralow platinum loading of 0.02 mgPt cm–2 exhibits a superior mass activity of 8.30, 1.64 times that of commercial Pt/C, DOE 2025 activity target, respectively, and a great stability with a power density retention of 70.8% after the long-term stability test. This work offers an insight into the design of unique confinement electrocatalysts for electrochemical energy technologies and the industrial implementation of fuel cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI