Operational Risk Prevention and Control Monitoring of Smart Financial System Based on Deep Learning

控制(管理) 风险分析(工程) 操作风险 订单(交换) 可靠性(半导体) 财务 财务风险 计算机科学 风险管理 工程类 业务 人工智能 量子力学 物理 功率(物理)
作者
Hui Zhu
标识
DOI:10.1007/978-3-031-28787-9_27
摘要

With the development of intelligent financial level, intelligent financial system has been gradually applied to most enterprises. Once there is operational risk in the financial system, it will seriously affect the security and reliability of enterprise finance. Therefore, once the operational risk of the smart finance system is prevented and controlled, it is very necessary. In order to ensure the accuracy and effectiveness of risk prevention and control monitoring of smart financial systems during operation, a deep learning-based operational risk prevention and control monitoring method for smart financial systems is designed. First, establish the corresponding relationship between the roles and operations of the smart financial system, establish an operational risk prevention and control model based on deep learning, design a risk assessment structure tree, and complete operational risk quantification. In order to verify the effectiveness of the design method, a performance comparison experiment was designed. The experimental results show that the accuracy of the test samples finally reached 74.6%, of which 21 risk samples were correctly monitored and prevented, indicating that the designed deep learning-based smart financial system operates Risk prevention and monitoring methods have certain effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
居政发布了新的文献求助10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
含蓄的难敌应助billkin采纳,获得30
2秒前
3秒前
火星上涫完成签到,获得积分10
3秒前
专注大米完成签到,获得积分10
4秒前
羊羊完成签到,获得积分10
4秒前
阿蕉完成签到 ,获得积分10
6秒前
无限的胜完成签到,获得积分10
6秒前
乐观的海雪完成签到,获得积分10
7秒前
莎莎完成签到 ,获得积分10
8秒前
8秒前
Aurora发布了新的文献求助10
8秒前
ccchao发布了新的文献求助10
9秒前
whu352完成签到 ,获得积分10
11秒前
orixero应助乐乐乐采纳,获得10
11秒前
zhang完成签到 ,获得积分10
11秒前
Orange应助逢流采纳,获得10
12秒前
研友_nxw2xL完成签到,获得积分10
14秒前
金金肖发布了新的文献求助10
16秒前
勤劳母鸡完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982092
求助须知:如何正确求助?哪些是违规求助? 3525833
关于积分的说明 11228648
捐赠科研通 3263670
什么是DOI,文献DOI怎么找? 1801633
邀请新用户注册赠送积分活动 879904
科研通“疑难数据库(出版商)”最低求助积分说明 807647