Research development on electrolytes for magnesium-ion batteries

电解质 离子液体 电化学窗口 电化学 离子电导率 阳极 材料科学 无机化学 化学 有机化学 电极 物理化学 催化作用
作者
Yuehua Man,Pauline Jaumaux,Yifan Xu,Yating Fei,Xiangyin Mo,Guoxiu Wang,Xiaosi Zhou
出处
期刊:Science Bulletin [Elsevier BV]
卷期号:68 (16): 1819-1842 被引量:76
标识
DOI:10.1016/j.scib.2023.07.027
摘要

Magnesium-ion batteries (MIBs) are considered strong candidates for next-generation energy-storage systems owing to their high theoretical capacity, divalent nature and the natural abundancy of magnesium (Mg) resources on Earth. However, the development of MIBs has been mainly limited by the incompatibility of Mg anodes with several Mg salts and conventional organic-liquid electrolytes. Therefore, one major challenge faced by MIBs technology lies on developing safe electrolytes, which demonstrate appropriate electrochemical voltage window and compatibility with Mg anode. This review discusses the development of MIBs from the point-of-view of the electrolyte syntheses. A systematic assessment of promising electrolyte design strategies is proposed including liquid and solid-state electrolytes. Liquid-based electrolytes have been largely explored and can be categorized by solvent-type: organic solvent, aqueous solvent, and ionic-liquids. Organic-liquid electrolytes usually present high electrochemical and chemical stability but are rather dangerous, while aqueous electrolytes present high ionic conductivity and eco-friendliness but narrow electrochemical stability window. Some ionic-liquid electrolytes have proved outstanding performance but are fairly expensive. As alternative to liquid electrolytes, solid-state electrolytes are increasingly attractive to increase energy density and safety. However, improving the ionic conductivity of Mg ions in these types of electrolytes is extremely challenging. We believe that this comprehensive review will enable researchers to rapidly grasp the problems faced by electrolytes for MIBs and the electrolyte design strategies proposed to this date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111111完成签到,获得积分10
2秒前
今夕何夕发布了新的文献求助10
4秒前
7秒前
科研通AI5应助olivia采纳,获得10
9秒前
tiantian8715完成签到,获得积分10
10秒前
Leucalypt完成签到,获得积分10
10秒前
Bin发布了新的文献求助10
14秒前
14秒前
14秒前
Kry4taloL完成签到 ,获得积分10
15秒前
15秒前
科目三应助chrysan采纳,获得10
17秒前
乐乐应助今夕何夕采纳,获得10
18秒前
欢呼煎蛋发布了新的文献求助10
19秒前
22秒前
Bin关闭了Bin文献求助
23秒前
ckz完成签到,获得积分10
23秒前
Peggy完成签到,获得积分10
24秒前
IIII完成签到,获得积分10
25秒前
27秒前
olivia发布了新的文献求助10
28秒前
科研通AI2S应助糖豆采纳,获得10
28秒前
31秒前
今夕何夕发布了新的文献求助10
31秒前
33秒前
35秒前
kk发布了新的文献求助10
37秒前
Jasper应助莲子粥采纳,获得10
37秒前
打打应助欢呼煎蛋采纳,获得30
37秒前
38秒前
orixero应助科研通管家采纳,获得10
39秒前
今后应助科研通管家采纳,获得10
39秒前
酷波er应助科研通管家采纳,获得30
39秒前
39秒前
阿飘应助科研通管家采纳,获得10
39秒前
39秒前
Ava应助科研通管家采纳,获得10
39秒前
zmnzmnzmn应助科研通管家采纳,获得10
39秒前
搜集达人应助科研通管家采纳,获得10
39秒前
赘婿应助科研通管家采纳,获得10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315