亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Seismic Data Reconstruction Based on Multiscale Attention Deep Learning

过度拟合 计算机科学 卷积神经网络 块(置换群论) 插值(计算机图形学) 残余物 深度学习 人工神经网络 数据处理 迭代重建 数据挖掘 合成数据 人工智能 模式识别(心理学) 算法 图像(数学) 几何学 数学 操作系统
作者
Ming Cheng,Jun Lin,Shaoping Lu,Shiqi Dong,Xintong Dong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:10
标识
DOI:10.1109/tgrs.2023.3298431
摘要

Seismic data reconstruction is always an essential step in the field of seismic data processing. Effective reconstruction methods can obtain high-density information at low-cost and also recover missing seismic data. Due to the strong feature extraction ability, convolutional neural network (CNN) has shown remarkable performance in numerous fields of data processing and been gradually applied to seismic data reconstruction. However, most of CNN-based methods applied to seismic data reconstruction only consider features in single scale or just utilize simple interactions between different scales, which is likely to result in performance degradation when facing complex and extremely incomplete seismic data. To further promote the performance of CNN-based methods in seismic data reconstruction, a novel multiscale enhanced attention network (MSEA-Net) is proposed based on the self-enhanced scheme. In general, MSEA-Net has a multiscale architecture which can significantly improve the processing accuracy by fusing the potential features in different-resolution seismic data. From the basis, a parallel sparse residual block is designed and applied in MSEA-Net to enhance processing efficiency and avoid overfitting issues. In addition, a dense spatial attention block is also introduced to the network to further reinforce the effective features, thereby strengthening the reconstruction performance. Experimental results demonstrate that our proposed network can effectively reconstruct incomplete seismic data including regular missing data, irregular missing data, and even consecutively missing data with big gap, which is superior than exist interpolation methods including commonly used U-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
果果发布了新的文献求助10
3秒前
sss完成签到 ,获得积分10
6秒前
果果完成签到,获得积分20
10秒前
冬去春来完成签到 ,获得积分10
11秒前
科研通AI5应助读书的时候采纳,获得10
12秒前
打打应助Mcrolando采纳,获得30
17秒前
23秒前
Akim应助科研通管家采纳,获得10
26秒前
俭朴山灵完成签到 ,获得积分10
30秒前
赘婿应助读书的时候采纳,获得10
30秒前
Lucas应助读书的时候采纳,获得10
49秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
StonesKing完成签到,获得积分20
1分钟前
1分钟前
1分钟前
MchemG完成签到,获得积分0
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
chnhen发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
chnhen完成签到,获得积分10
2分钟前
2分钟前
3分钟前
高分求助中
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4099247
求助须知:如何正确求助?哪些是违规求助? 3636789
关于积分的说明 11525740
捐赠科研通 3346421
什么是DOI,文献DOI怎么找? 1839269
邀请新用户注册赠送积分活动 906501
科研通“疑难数据库(出版商)”最低求助积分说明 823831