ULS4US: universal lesion segmentation framework for 2D ultrasound images

分割 人工智能 计算机科学 病变 模式识别(心理学) 深度学习 图像分割 计算机视觉 市场细分 图像(数学) 医学 病理 业务 营销
作者
Xinglong Wu,Yan Jiang,Hanshuo Xing,Wenbo Song,Peiyan Wu,Xin‐Wu Cui,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (16): 165009-165009 被引量:1
标识
DOI:10.1088/1361-6560/ace09b
摘要

Objective. Deep learning (DL) methods have been widely utilized in ultrasound (US) image segmentation tasks. However, current DL segmentation methods for US images are typically developed only for lesion segmentation of specific organs; e.g. breast or thyroid US. So far, there is currently no general-purpose lesion segmentation framework for US images that can be implemented across various organs in computer aided diagnosis scenarios. Considering that most lesion locations in US images have abnormal ultrasonic echo intensities or patterns that may be visually distinct from surrounding normal tissues or organs, it is thus possible to develop a universal lesion segmentation framework for US images (named as ULS4US), focusing on effectively identifying and segmenting lesions of various sizes in different organs.Approach. The proposed ULS4US framework comprises three components: (1) a multiple-in multi-out (MIMO) UNet that incorporates multiscale features extracted from the US image and lesion, (2) a novel two-stage lesion-aware learning algorithm that recursively locates and segments the lesions in a reinforced manner, and (3) a lesion-adaptive loss function for the MIMO-UNet that integrates two weighted components and one self-supervised component designed for intra- and inter-branches of network outputs, respectively.Main Results. Compared to six state-of-the-art segmentation models, ULS4US has achieved superior performance (accuracy of 0.956, DSC of 0.836, HD of 7.849, and mIoU of 0.731) in a unified dataset consisting of two public and three private US image datasets, which include over 2200 images of three specific types of organs. Comparative experiments on both individual and unified datasets suggest that ULS4US is likely scalable with additional data.Significance. The study demonstrates the potential of DL-based universal lesion segmentation approaches in clinical US, which would substantially reduce clinician workload and enhance diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yzxzdm完成签到 ,获得积分10
1秒前
K珑完成签到,获得积分10
5秒前
SciGPT应助PRL采纳,获得10
6秒前
学术骗子小刚完成签到,获得积分10
7秒前
求求完成签到 ,获得积分10
14秒前
16秒前
小鲤鱼完成签到,获得积分10
16秒前
盐汽水完成签到 ,获得积分10
19秒前
lxr2发布了新的文献求助10
21秒前
嘉丽的后花园完成签到,获得积分10
22秒前
Hana关注了科研通微信公众号
25秒前
ssy完成签到,获得积分10
30秒前
pebble完成签到,获得积分10
30秒前
爆米花应助积极以云采纳,获得10
30秒前
浅笑成风完成签到,获得积分10
34秒前
34秒前
Yolo完成签到,获得积分10
35秒前
无辜念文完成签到,获得积分10
36秒前
科研通AI5应助笨笨忘幽采纳,获得10
38秒前
积极以云完成签到,获得积分10
38秒前
38秒前
argon完成签到,获得积分10
41秒前
caicai完成签到 ,获得积分10
42秒前
研友_ZeqAxZ完成签到,获得积分10
43秒前
云烟成雨完成签到,获得积分10
44秒前
lr完成签到 ,获得积分10
45秒前
woobinhua发布了新的文献求助10
45秒前
小白兔完成签到 ,获得积分10
46秒前
林夕完成签到,获得积分10
47秒前
轩辕剑身完成签到,获得积分0
49秒前
小美完成签到,获得积分10
51秒前
无花果应助不缺人YYDS采纳,获得10
52秒前
木子李完成签到 ,获得积分10
53秒前
zh完成签到 ,获得积分10
53秒前
Snow完成签到 ,获得积分10
54秒前
58秒前
小呵点完成签到 ,获得积分10
1分钟前
sheh发布了新的文献求助10
1分钟前
1分钟前
正正完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226987
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734