ULS4US: universal lesion segmentation framework for 2D ultrasound images

分割 人工智能 计算机科学 病变 模式识别(心理学) 深度学习 图像分割 计算机视觉 市场细分 图像(数学) 医学 病理 业务 营销
作者
Xinglong Wu,Yan Jiang,Hanshuo Xing,Wenbo Song,Peiyan Wu,Xin‐Wu Cui,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (16): 165009-165009 被引量:1
标识
DOI:10.1088/1361-6560/ace09b
摘要

Objective. Deep learning (DL) methods have been widely utilized in ultrasound (US) image segmentation tasks. However, current DL segmentation methods for US images are typically developed only for lesion segmentation of specific organs; e.g. breast or thyroid US. So far, there is currently no general-purpose lesion segmentation framework for US images that can be implemented across various organs in computer aided diagnosis scenarios. Considering that most lesion locations in US images have abnormal ultrasonic echo intensities or patterns that may be visually distinct from surrounding normal tissues or organs, it is thus possible to develop a universal lesion segmentation framework for US images (named as ULS4US), focusing on effectively identifying and segmenting lesions of various sizes in different organs.Approach. The proposed ULS4US framework comprises three components: (1) a multiple-in multi-out (MIMO) UNet that incorporates multiscale features extracted from the US image and lesion, (2) a novel two-stage lesion-aware learning algorithm that recursively locates and segments the lesions in a reinforced manner, and (3) a lesion-adaptive loss function for the MIMO-UNet that integrates two weighted components and one self-supervised component designed for intra- and inter-branches of network outputs, respectively.Main Results. Compared to six state-of-the-art segmentation models, ULS4US has achieved superior performance (accuracy of 0.956, DSC of 0.836, HD of 7.849, and mIoU of 0.731) in a unified dataset consisting of two public and three private US image datasets, which include over 2200 images of three specific types of organs. Comparative experiments on both individual and unified datasets suggest that ULS4US is likely scalable with additional data.Significance. The study demonstrates the potential of DL-based universal lesion segmentation approaches in clinical US, which would substantially reduce clinician workload and enhance diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
tdtk发布了新的文献求助10
22秒前
许大脚完成签到 ,获得积分10
24秒前
神勇从波完成签到 ,获得积分10
26秒前
自觉忆山完成签到,获得积分10
30秒前
wei完成签到,获得积分10
30秒前
落雪完成签到 ,获得积分10
37秒前
mengmenglv完成签到 ,获得积分0
40秒前
Xiaoxiao应助热心小松鼠采纳,获得10
43秒前
科研通AI2S应助热心小松鼠采纳,获得10
43秒前
Xiaoxiao应助热心小松鼠采纳,获得10
43秒前
夜雨完成签到 ,获得积分10
46秒前
NexusExplorer应助现代听枫采纳,获得10
57秒前
李y梅子完成签到 ,获得积分10
1分钟前
minuxSCI完成签到,获得积分10
1分钟前
qianci2009完成签到,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
ipcy完成签到 ,获得积分10
1分钟前
1分钟前
Pu Chunyi完成签到,获得积分10
1分钟前
叨叨完成签到,获得积分10
1分钟前
落落完成签到 ,获得积分0
1分钟前
江漓完成签到 ,获得积分10
1分钟前
Valrhona完成签到 ,获得积分10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
abtitw完成签到,获得积分10
1分钟前
鳗鱼冰薇完成签到 ,获得积分10
2分钟前
士大夫大师傅完成签到,获得积分10
2分钟前
sunsun10086完成签到 ,获得积分10
2分钟前
2分钟前
Tsui应助无奈的小松鼠采纳,获得10
2分钟前
2分钟前
Tsui应助无奈的小松鼠采纳,获得10
2分钟前
吉祥高趙完成签到 ,获得积分10
2分钟前
Rainielove0215完成签到,获得积分0
2分钟前
小HO完成签到 ,获得积分10
2分钟前
愉快的犀牛完成签到 ,获得积分10
2分钟前
kanong完成签到,获得积分0
2分钟前
劳达完成签到,获得积分10
2分钟前
等待的幼晴完成签到,获得积分10
2分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092151
求助须知:如何正确求助?哪些是违规求助? 3630866
关于积分的说明 11507765
捐赠科研通 3341991
什么是DOI,文献DOI怎么找? 1836948
邀请新用户注册赠送积分活动 904840
科研通“疑难数据库(出版商)”最低求助积分说明 822585