清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hybrid Feature Selection using Shapley Value and ReliefF for Medical Datasets

特征选择 计算机科学 数据挖掘 夏普里值 滤波器(信号处理) 分类器(UML) 人工智能 特征(语言学) 数据集 机器学习 模式识别(心理学) 数学 哲学 数理经济学 语言学 博弈论 计算机视觉
作者
Neesha Jothi,Sharifah Mashita Syed-Mohamed,Heshalini Rajagopal
标识
DOI:10.1109/icict54344.2022.9850833
摘要

The medical databases are composed of vast amount of data. Increment in data volume has led to a massive amount of high-dimensional medical data made available to the public on the Internet. These large amounts of medical data can be put into good use through knowledge discovery by identifying knowledge that is useful via data mining. These high-dimensional data are often associated with redundant features removal. A range of information theoretic methods have been deployed in selecting the most viable and relevant feature sets, which have led to reduction in the size of data. Nonetheless, these methods have mostly failed in identifying the significance of each feature derived from the sets of features. An exceptional feature set not only decreases computational time and cost, but also enhances classifier accuracy in classification. As such, this study proposes a feature selection technique based on filter-wrapper technique using the ReliefF-Shapley Value hybrid. The ReliefF filter method was applied in the early stage stage to determine the accuracy of a feature in discriminating among classes. Next, the reduced set of features yielded from ReliefF was passed to the wrapper-based Shapley Value. In the wrapper method, Shapley Value was employed to add weight, and later, to assess each attribute based on the assessment standards. The outcomes were assessed using UCI-derived five medical datasets. The proposed method was able to yield competitive outcomes for most datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
汉堡包应助七安得安采纳,获得10
28秒前
41秒前
七安得安发布了新的文献求助10
46秒前
yipmyonphu完成签到,获得积分10
49秒前
Benhnhk21完成签到,获得积分10
1分钟前
蔓越莓麻薯完成签到 ,获得积分10
1分钟前
Vintoe完成签到 ,获得积分10
1分钟前
linkman发布了新的文献求助10
1分钟前
1分钟前
linkman发布了新的文献求助10
1分钟前
1分钟前
jjj完成签到,获得积分10
2分钟前
yiyixt完成签到 ,获得积分10
2分钟前
方白秋完成签到,获得积分0
2分钟前
原子超人完成签到,获得积分10
3分钟前
hehe完成签到,获得积分10
3分钟前
Jasper应助joysa采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
3分钟前
HZ发布了新的文献求助10
3分钟前
3分钟前
叶千山完成签到 ,获得积分10
3分钟前
joysa发布了新的文献求助10
3分钟前
HZ完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助10
5分钟前
Criminology34应助阿泽采纳,获得10
5分钟前
QQWRV发布了新的文献求助30
5分钟前
ZaZa完成签到,获得积分10
5分钟前
6分钟前
pengpengyin发布了新的文献求助10
6分钟前
田様应助pengpengyin采纳,获得10
6分钟前
alanbike完成签到,获得积分10
6分钟前
miaomiao123完成签到 ,获得积分10
6分钟前
青树柠檬完成签到 ,获得积分10
7分钟前
房天川完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644940
求助须知:如何正确求助?哪些是违规求助? 4766456
关于积分的说明 15025933
捐赠科研通 4803292
什么是DOI,文献DOI怎么找? 2568166
邀请新用户注册赠送积分活动 1525618
关于科研通互助平台的介绍 1485156