间充质干细胞
心肌保护
外体
血管生成
癌症研究
心功能曲线
再灌注损伤
小RNA
微泡
细胞凋亡
医学
缺血
药理学
炎症
细胞生物学
化学
免疫学
生物
内科学
心力衰竭
基因
生物化学
作者
Ling Gao,Fan Qiu,Hao Cao,Hao Li,Gonghua Dai,Teng Ma,Yanshan Gong,Wei Luo,Dongling Zhu,Zhixuan Qiu,Ping Zhu,Shu-Guang Chu,Huang‐Tian Yang,Zhongmin Liu
出处
期刊:Theranostics
[Ivyspring International Publisher]
日期:2023-01-01
卷期号:13 (2): 685-703
被引量:88
摘要
Rationale: Clinical application of mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-Exos) to alleviate myocardial ischemia/reperfusion (I/R) injury is compromised by the low cell engraftment rate and uncontrolled exosomal content.As one of their active ingredients, single-component microRNA therapy may have more inherent advantages.We sought to find an ideal microRNA candidate and determine whether it could reproduce the cardioprotective effects of MSCs and MSC-Exos.Methods: Cardiac function and myocardial remodeling in MSC, MSC-Exo, or microRNA oligonucleotide-treated mouse hearts were investigated after I/R injury.The effects of microRNA oligonucleotides on cardiac cells (macrophages, cardiomyocytes, fibroblasts, and endothelial cells) and their downstream mechanisms were confirmed.Large animals were also employed to investigate the safety of microRNA therapy. Results:The results showed that microRNA-125a-5p (miR-125a-5p) is enriched in MSC-Exos, and intramyocardial delivery of their modified oligonucleotides (agomir) in mouse I/R myocardium, as well as MSCs or MSC-Exos, exerted obvious cardioprotection by increasing cardiac function and limiting adverse remodeling.In addition, miR-125a-5p agomir treatment increased M2 macrophage polarization, promoted angiogenesis, and attenuated fibroblast proliferation and activation, which subsequently contributed to the improvements in cardiomyocyte apoptosis and inflammation.Mechanistically, Klf13, Tgfbr1, and Daam1 are considered the targets of miR-125a-5p for regulating the function of macrophages, fibroblasts, and endothelial cells, respectively.Similar results were observed following miR-125a-5p agomir treatment in a porcine model, with no increase in the risk of arrhythmia or hepatic, renal, or cardiac toxicity.Conclusions: This targeted microRNA delivery presents an effective and safe strategy as a stem cell and exosomal therapy in I/R cardiac repair.
科研通智能强力驱动
Strongly Powered by AbleSci AI