An Improved Gray Wolf Optimization Algorithm Based on Levy Flight and Adaptive Strategies

趋同(经济学) 计算机科学 算法 莱维航班 数学优化 灰色(单位) 早熟收敛 局部最优 全局优化 集合(抽象数据类型) 数学 粒子群优化 放射科 随机游动 经济 统计 医学 程序设计语言 经济增长
作者
Wenbo Zhang,Ruoxia Yao,Xiaoteng Yang,Kaiguang Wang
标识
DOI:10.1109/nana56854.2022.00083
摘要

A new improved gray wolf optimization algorithm (LAGWO) is proposed to address the disadvantages of global exploration and local exploitation imbalance, slow convergence speed, low optimization-seeking accuracy and easy to fall into local optimality when solving complex problems. Firstly, the influence of the attenuation factor on the gray wolf optimization algorithm is analyzed, and an adaptive attenuation factor with different exploration ratios can be set according to different optimization problems is proposed to balance the exploration and exploitation capabilities of the algorithm and to ensure that the algorithm has a certain global search capability even at the late stage of the optimization search. Numerical simulation experiments show that increasing the exploration capacity ratio is beneficial to improving the convergence accuracy of the algorithm. Then, the characteristics of occasional long-distance walking of Levy's flight are applied to the optimization search process of α and β wolves to improve the global search ability of the algorithm and avoid falling into local optimum. Aiming at the feature that the candidate wolves ignore the different importance of the three leading wolves in the position update, the adaptive learning weight strategy is proposed to ensure that the constraint of individual gray wolves is reduced at the early stage of the algorithm seeking and improve the global search ability of the algorithm, and at the same time, it can speed up the convergence speed and improve the convergence accuracy at the late stage of the seeking. Finally, simulation experiments are carried out for 12 standard test functions and compared with several other algorithms, and the experimental results show that the algorithm has greater advantages in the optimization-seeking accuracy, algorithm stability and convergence speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsx发布了新的文献求助10
1秒前
心木完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
科目三应助jl采纳,获得10
2秒前
安一完成签到,获得积分10
3秒前
图灵桑发布了新的文献求助10
3秒前
木mao完成签到,获得积分10
3秒前
3秒前
3秒前
火星上稀完成签到 ,获得积分10
4秒前
5秒前
英姑应助陶菊苏月采纳,获得10
5秒前
6秒前
甄凤元发布了新的文献求助10
6秒前
6秒前
乐乐应助古月采纳,获得10
7秒前
riverlove7完成签到,获得积分10
7秒前
7秒前
lan完成签到,获得积分10
7秒前
ZXT完成签到 ,获得积分10
8秒前
Ava应助ACEmeng采纳,获得10
8秒前
9秒前
tesla发布了新的文献求助10
9秒前
菜鸟勇闯完成签到,获得积分20
10秒前
古月发布了新的文献求助10
11秒前
11秒前
11秒前
walu发布了新的文献求助10
11秒前
深情安青应助糟糕的怀寒采纳,获得10
12秒前
13秒前
13秒前
思源应助一个好听的名字采纳,获得10
13秒前
GOJO发布了新的文献求助10
13秒前
hkh发布了新的文献求助10
13秒前
33完成签到,获得积分10
13秒前
菜鸟勇闯发布了新的文献求助10
14秒前
juanjuan发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384951
求助须知:如何正确求助?哪些是违规求助? 3877937
关于积分的说明 12080577
捐赠科研通 3521425
什么是DOI,文献DOI怎么找? 1932484
邀请新用户注册赠送积分活动 973703
科研通“疑难数据库(出版商)”最低求助积分说明 871939