亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

VSPIM: SRAM Processing-in-Memory DNN Acceleration via Vector-Scalar Operations

计算机科学 并行计算 计算 高效能源利用 计算机体系结构 计算机工程 隐藏物 算法 电气工程 工程类
作者
Chen Nie,Chenyu Tang,Jie Lin,Huan Hu,Chenyang Lv,Ting Cao,Weifeng Zhang,Li Jiang,Xiaoyao Liang,Weikang Qian,Yanan Sun,Zhezhi He
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (10): 2378-2390 被引量:9
标识
DOI:10.1109/tc.2023.3285095
摘要

Processing-in-Memory (PIM) has been widely explored for accelerating data-intensive machine learning computation that mainly consists of general-matrix-multiplication (GEMM), by mitigating the burden of data movements and exploiting the ultra-high memory parallelism. The two mainstreams of PIM, the analog- and digital-type, have both been exploited in accelerating machine learning workloads by numerous outstanding prior works. Currently, the digital-PIM is increasingly favored due to the broader computing support and the avoidance of errors caused by intrinsic non-idealities, e.g., process variation. Nevertheless, it still lacks further optimization considering the characteristics of the GEMM computation, including better efficient data layout and scheduling, and the ability to handle the sparsity of activations at the bit-level. To boost the performance and efficiency of digital SRAM PIM, we propose the architecture called VSPIM that performs the computation in a bit-serial fashion, with unique support of vector-scalar computing pattern. The novelties of the VSPIM can be concluded as follows: 1) support bit-serial based scalar-vector computing via ingenious parallel bit-broadcasting; 2) refine the GEMM mapping strategy and computing pattern to enhance performance and efficiency; 3) powered by the introduced scalar-vector operation, the bit-sparsity of activation is leveraged to halt unnecessary computation to maximize efficiency and throughput. Our comprehensive evaluation shows that, compared to the state-of-the-art SRAM-based digital-PIM design (Neural Cache), VSPIM can significantly boost the performance and energy efficiency by up to $8.87\times$ and $4.81\times$ respectively, with negligible area overhead, upon multiple representative neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
我是老大应助默默善愁采纳,获得30
8秒前
29秒前
犬来八荒发布了新的文献求助10
33秒前
36秒前
Migue发布了新的文献求助50
37秒前
cy完成签到 ,获得积分10
54秒前
56秒前
cccttt发布了新的文献求助10
1分钟前
可爱的函函应助cccttt采纳,获得10
1分钟前
1分钟前
1分钟前
笨蛋美女完成签到 ,获得积分10
1分钟前
完美世界应助666采纳,获得10
1分钟前
朱羊羊发布了新的文献求助10
1分钟前
赤恩完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
朱羊羊完成签到,获得积分10
2分钟前
3分钟前
loii完成签到,获得积分10
3分钟前
leilei发布了新的文献求助10
3分钟前
3分钟前
暮雪冰原完成签到 ,获得积分10
3分钟前
3分钟前
666发布了新的文献求助10
3分钟前
leilei完成签到,获得积分10
3分钟前
3分钟前
?......完成签到,获得积分10
3分钟前
budingman发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
666完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749642
什么是DOI,文献DOI怎么找? 2549305
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091