亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UniFormer: Unifying Convolution and Self-Attention for Visual Recognition

计算机科学 卷积(计算机科学) 人工智能 模式识别(心理学) 计算机视觉 人工神经网络
作者
Kunchang Li,Yali Wang,Junhao Zhang,Peng Gao,Guanglu Song,Yu Liu,Hongsheng Li,Yu Qiao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (10): 12581-12600 被引量:304
标识
DOI:10.1109/tpami.2023.3282631
摘要

It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision transformers (ViTs) have been two dominant frameworks in the past few years. Though CNNs can efficiently decrease local redundancy by convolution within a small neighborhood, the limited receptive field makes it hard to capture global dependency. Alternatively, ViTs can effectively capture long-range dependency via self-attention, while blind similarity comparisons among all the tokens lead to high redundancy. To resolve these problems, we propose a novel Unified transFormer (UniFormer), which can seamlessly integrate the merits of convolution and self-attention in a concise transformer format. Different from the typical transformer blocks, the relation aggregators in our UniFormer block are equipped with local and global token affinity respectively in shallow and deep layers, allowing tackling both redundancy and dependency for efficient and effective representation learning. Finally, we flexibly stack our blocks into a new powerful backbone, and adopt it for various vision tasks from image to video domain, from classification to dense prediction. Without any extra training data, our UniFormer achieves 86.3 top-1 accuracy on ImageNet-1 K classification task. With only ImageNet-1 K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks. It obtains 82.9/84.8 top-1 accuracy on Kinetics-400/600, 60.9/71.2 top-1 accuracy on Something-Something V1/V2 video classification tasks, 53.8 box AP and 46.4 mask AP on COCO object detection task, 50.8 mIoU on ADE20 K semantic segmentation task, and 77.4 AP on COCO pose estimation task. Moreover, we build an efficient UniFormer with a concise hourglass design of token shrinking and recovering, which achieves 2-4[Formula: see text] higher throughput than the recent lightweight models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的伊完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
7秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
量子星尘发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Frank应助椒盐柠檬茶采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Orange应助123采纳,获得10
1分钟前
打打应助文学痞采纳,获得10
1分钟前
2分钟前
文学痞发布了新的文献求助10
2分钟前
Fangyu完成签到,获得积分10
2分钟前
科研通AI5应助wang采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
sunnn完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
suxili完成签到 ,获得积分10
2分钟前
3分钟前
wang发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Frank完成签到,获得积分10
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Fangyu发布了新的文献求助10
4分钟前
混子始祖完成签到,获得积分10
4分钟前
默默的绾绾完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885807
求助须知:如何正确求助?哪些是违规求助? 3427865
关于积分的说明 10757116
捐赠科研通 3152724
什么是DOI,文献DOI怎么找? 1740596
邀请新用户注册赠送积分活动 840305
科研通“疑难数据库(出版商)”最低求助积分说明 785302