亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Model for Automatic Segmentation of Intraparenchymal and Intraventricular Hemorrhage for Catheter Puncture Path Planning

脑室出血 实质内出血 医学 血肿 脑出血 人工智能 分割 图像分割 计算机视觉 放射科 计算机科学 外科 格拉斯哥昏迷指数 怀孕 遗传学 蛛网膜下腔出血 生物 胎龄
作者
Guoyu Tong,Xi Wang,Huiyan Jiang,Anhua Wu,Wen Cheng,Xiao Cui,Long Bao,Ruikai Cai,Wei Cai
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (9): 4454-4465 被引量:4
标识
DOI:10.1109/jbhi.2023.3285809
摘要

Intracerebral hemorrhage is the subtype of stroke with the highest mortality rate, especially when it also causes secondary intraventricular hemorrhage. The optimal surgical option for intracerebral hemorrhage remains one of the most controversial areas of neurosurgery. We aim to develop a deep learning model for the automatic segmentation of intraparenchymal and intraventricular hemorrhage for clinical catheter puncture path planning. First, we develop a 3D U-Net embedded with a multi-scale boundary aware module and a consistency loss for segmenting two types of hematoma in computed tomography images. The multi-scale boundary aware module can improve the model's ability to understand the two types of hematoma boundaries. The consistency loss can reduce the probability of classifying a pixel into two categories at the same time. Since different hematoma volumes and locations have different treatments. We also measure hematoma volume, estimate centroid deviation, and compare with clinical methods. Finally, we plan the puncture path and conduct clinical validation. We collected a total of 351 cases, and the test set contained 103 cases. For intraparenchymal hematomas, the accuracy can reach 96 % when the proposed method is applied for path planning. For intraventricular hematomas, the proposed model's segmentation efficiency and centroid prediction are superior to other comparable models. Experimental results and clinical practice show that the proposed model has potential for clinical application. In addition, our proposed method has no complicated modules and improves efficiency, with generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Vicki完成签到,获得积分20
3秒前
4秒前
CipherSage应助精明的眼神采纳,获得10
8秒前
12秒前
熊一只发布了新的文献求助10
17秒前
22秒前
shimhjy应助机灵柚子采纳,获得20
25秒前
脑洞疼应助Vicki采纳,获得30
25秒前
LiuChuannan完成签到 ,获得积分10
25秒前
27秒前
osel完成签到,获得积分10
27秒前
李李发布了新的文献求助10
27秒前
丘比特应助熊一只采纳,获得10
27秒前
王春琰完成签到 ,获得积分10
29秒前
osel发布了新的文献求助10
32秒前
邵能琪发布了新的文献求助10
37秒前
123完成签到 ,获得积分10
38秒前
Ava应助Jian采纳,获得10
38秒前
聪慧曲奇完成签到 ,获得积分10
40秒前
Gudeguy完成签到 ,获得积分10
41秒前
dwfwq完成签到,获得积分10
41秒前
月亮完成签到 ,获得积分10
45秒前
asdfqaz完成签到 ,获得积分10
46秒前
菜鸡5号完成签到,获得积分10
54秒前
sky完成签到,获得积分10
1分钟前
Jess2147应助安琦采纳,获得10
1分钟前
时势造英雄完成签到 ,获得积分10
1分钟前
动听的琴完成签到,获得积分10
1分钟前
1分钟前
对照完成签到 ,获得积分10
1分钟前
芳华如梦完成签到 ,获得积分10
1分钟前
整齐千柳发布了新的文献求助10
1分钟前
bkagyin应助整齐千柳采纳,获得10
1分钟前
1分钟前
百叶发布了新的文献求助10
1分钟前
1分钟前
Fn完成签到 ,获得积分10
1分钟前
英俊的铭应助sky采纳,获得10
1分钟前
亚雄完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346386
关于积分的说明 10329180
捐赠科研通 3062834
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807462
科研通“疑难数据库(出版商)”最低求助积分说明 763702