Automatic defect detection and three-dimensional reconstruction from pulsed thermography images based on a bidirectional long-short term memory network

计算机科学 热成像 任务(项目管理) 一般化 人工智能 短时记忆 期限(时间) 模式识别(心理学) 能量(信号处理) 人工神经网络 循环神经网络 数学 管理 经济 红外线的 数学分析 物理 光学 统计 量子力学
作者
Zhuoqiao Wu,Siyun Chen,Fan Feng,Jinrong Qi,Lichun Feng,Ning Tao,Cunlin Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:124: 106574-106574
标识
DOI:10.1016/j.engappai.2023.106574
摘要

Machine learning techniques have become increasingly applied to non-destructive testing based on pulsed thermography. However, existing methods need to extract characteristic data manually. The present work addresses this issue by applying a bidirectional long-short term memory (Bi-LSTM) network to identify defects, predict defect depths, and reconstruct defective materials in three dimensions automatically based on raw cooling data sequences. The network is trained and tested based on data collected for stainless-steel specimens with multiple flat-bottom holes introduced at various specimen depths. A dual-task method and a single-task method were proposed based on Bi-LSTM network. A classification model and a regression model are constructed in the dual-task method for identifying defects and predicting defect depths. Only the regression network is implemented in a single-task method to more quickly obtain the same results based on a depth threshold. Both methods are demonstrated to achieve satisfactory accuracy in the 3D reconstruction of the defects in the testing specimen. In addition, higher pulse energy and faster acquisition frequency can promote the prediction accuracy. Then the results of Bi-LSTM were compared with the results of 1D CNN and MLP. To verify the generalization of the proposed method, CFRP specimen is employed for 3D reconstruction, which also performed with good results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BBB完成签到,获得积分10
刚刚
1秒前
1秒前
Costing完成签到,获得积分10
2秒前
3秒前
王琴发布了新的文献求助10
3秒前
傅以柳完成签到,获得积分10
3秒前
4秒前
深情安青应助hahhhah采纳,获得10
4秒前
7秒前
嘻嘻完成签到,获得积分10
7秒前
沉默是金发布了新的文献求助10
7秒前
7秒前
一条摆摆的沙丁鱼完成签到 ,获得积分10
7秒前
8秒前
8秒前
Rita发布了新的文献求助10
9秒前
易二三发布了新的文献求助10
9秒前
lee完成签到,获得积分10
10秒前
10秒前
10秒前
卷网那个应助科研通管家采纳,获得10
10秒前
kingwill应助科研通管家采纳,获得20
10秒前
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
Orange应助科研通管家采纳,获得20
10秒前
爆米花应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
qing发布了新的文献求助10
11秒前
12秒前
魏伯安发布了新的文献求助10
15秒前
斯文翠完成签到,获得积分10
15秒前
16秒前
www发布了新的文献求助30
16秒前
17秒前
燕子发布了新的文献求助30
17秒前
RC_Wang应助Kz采纳,获得10
18秒前
在水一方应助Kz采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479336
求助须知:如何正确求助?哪些是违规求助? 3936825
关于积分的说明 12213102
捐赠科研通 3591524
什么是DOI,文献DOI怎么找? 1975029
邀请新用户注册赠送积分活动 1012172
科研通“疑难数据库(出版商)”最低求助积分说明 905551