Vehicle detection algorithm for foggy based on improved AOD-Net

算法 计算机科学
作者
Liyan Zhang,J. Y. Zhao,Zhengang Lang,L I Fang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:46 (14): 2696-2705
标识
DOI:10.1177/01423312241248490
摘要

To strengthen the safety monitoring of foggy road traffic and maintain the safety of vehicle driving on foggy roads, image dehazing algorithms are used to improve the clarity of road images detected in foggy environments, thereby improving the detection ability and monitoring efficiency of intelligent transportation systems for vehicle targets. Due to the low accuracy of vehicle detection and serious problem of missed detections in haze environments, this paper proposes an improved All-in-One Dehazing Network (AOD-Net) algorithm for detecting foggy vehicles, which adds batch normalization (BN) layers after each layer of convolution in AOD-Net, accelerating the convergence of the model and controlling overfitting. To enhance image detail information, an effective pyramid-shaped PSA attention module is embedded to extract richer feature information, enrich model representation, and improve the loss function to a multi-scale structural similarity (MS-SSIM) + L1 mixed loss function, thereby improving the quality, brightness, and contrast of dehazing images. Compared with current image dehazing algorithms, the dehazing quality of our algorithm is superior to other dehazing algorithms, such as dark channel prior (DCP), Dehaze-Net, and Fusion Feature Attention Network (FFA-Net). Compared with AOD-Net, the improved algorithm has increased the peak signal-to-noise ratio by 3.23 dB. At the same time, after the improved AOD-Net image dehazing processing, YOLOv7 object detection was performed and experimentally validated on a real foggy dataset. The results showed that compared with the previous method, it had better recognition performance in foggy detection and recognition, and higher detection accuracy for vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助HELLO采纳,获得10
刚刚
刘大壮完成签到,获得积分20
刚刚
bkagyin应助tkx是流氓兔采纳,获得10
1秒前
1秒前
乐乐应助Cheng采纳,获得10
1秒前
Jasper应助Fengh采纳,获得30
2秒前
慕青应助司马三问采纳,获得10
2秒前
cling发布了新的文献求助10
3秒前
kk完成签到 ,获得积分10
3秒前
sxy发布了新的文献求助10
4秒前
Owen应助玉暖洋洋采纳,获得10
4秒前
5秒前
5秒前
7秒前
Owen应助dhwegdeug采纳,获得10
8秒前
典雅又夏发布了新的文献求助10
9秒前
风和日li完成签到,获得积分0
10秒前
11秒前
刘大壮关注了科研通微信公众号
11秒前
下山完成签到 ,获得积分10
11秒前
12秒前
华仔应助科研的神龙猫采纳,获得10
13秒前
老实人品牌完成签到,获得积分10
13秒前
14秒前
Holly完成签到,获得积分10
15秒前
15秒前
Akim应助ly采纳,获得10
15秒前
15秒前
15秒前
CodeCraft应助自由凌波采纳,获得10
15秒前
量子星尘发布了新的文献求助30
16秒前
Weiweiweixiao完成签到,获得积分10
16秒前
小young完成签到 ,获得积分10
16秒前
fzh完成签到,获得积分10
16秒前
等待巧曼发布了新的文献求助10
18秒前
Foch完成签到,获得积分10
19秒前
19秒前
独特的松思完成签到,获得积分10
19秒前
20秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870888
求助须知:如何正确求助?哪些是违规求助? 3412930
关于积分的说明 10682384
捐赠科研通 3137478
什么是DOI,文献DOI怎么找? 1730944
邀请新用户注册赠送积分活动 834519
科研通“疑难数据库(出版商)”最低求助积分说明 781191