Improving Microstructural Estimation in Time‐Dependent Diffusion MRI With a Bayesian Method

扩散 贝叶斯概率 磁共振弥散成像 估计 计算机科学 贝叶斯估计量 医学 磁共振成像 人工智能 放射科 物理 工程类 系统工程 热力学
作者
Kuiyuan Liu,Zixuan Lin,Tianshu Zheng,Ruicheng Ba,Zelin Zhang,Haotian Li,Hongxi Zhang,Assaf Tal,Dan Wu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:3
标识
DOI:10.1002/jmri.29434
摘要

Background Accurately fitting diffusion‐time‐dependent diffusion MRI ( t d ‐dMRI) models poses challenges due to complex and nonlinear formulas, signal noise, and limited clinical data acquisition. Purpose Introduce a Bayesian methodology to refine microstructural fitting within the IMPULSED (Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion) model and optimize the prior distribution within the Bayesian framework. Study Type Retrospective. Population Involving 69 pediatric patients (median age 6 years, interquartile range [IQR] 3–9 years, 61% male) with 41 low‐grade and 28 high‐grade gliomas, of which 76.8% were identified within the brainstem or cerebellum. Field Strength/Sequence 3 T, oscillating gradient spin‐echo (OGSE) and pulsed gradient spin‐echo (PGSE). Assessment The Bayesian method's performance in fitting cell diameter (), intracellular volume fraction (), and extracellular diffusion coefficient () was compared against the NLLS method, considering simulated and experimental data. The tumor region‐of‐interest (ROI) were manually delineated on the b 0 images. The diagnostic performance in distinguishing high‐ and low‐grade gliomas was assessed, and fitting accuracy was validated against H&E‐stained pathology. Statistical Tests T‐test, receiver operating curve (ROC), area under the curve (AUC) and DeLong's test were conducted. Significance considered at P < 0.05. Results Bayesian methodology manifested increased accuracy with robust estimates in simulation (RMSE decreased by 29.6%, 40.9%, 13.6%, and STD decreased by 29.2%, 43.5%, and 24.0%, respectively for , , and compared to NLLS), indicating fewer outliers and reduced error. Diagnostic performance for tumor grade was similar in both methods, however, Bayesian method generated smoother microstructural maps (outliers ratio decreased by 45.3% ± 19.4%) and a marginal enhancement in correlation with H&E staining result ( r = 0.721 for compared to r = 0.698 using NLLS, P = 0.5764). Data Conclusion The proposed Bayesian method substantially enhances the accuracy and robustness of IMPULSED model estimation, suggesting its potential clinical utility in characterizing cellular microstructure. Evidence Level 3 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
眼睛大又蓝完成签到,获得积分10
1秒前
2秒前
4秒前
4秒前
sue401发布了新的文献求助10
5秒前
共享精神应助谨慎的擎宇采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
温暖寻云发布了新的文献求助10
11秒前
陈醋塔塔完成签到,获得积分10
12秒前
13秒前
zgnb完成签到,获得积分10
14秒前
15秒前
友好冥王星完成签到 ,获得积分10
15秒前
15秒前
迅速的秋珊完成签到,获得积分10
16秒前
zgnb发布了新的文献求助10
18秒前
张涛完成签到,获得积分20
18秒前
贾哲宇发布了新的文献求助30
20秒前
冰的幻想完成签到,获得积分10
22秒前
风云完成签到,获得积分10
24秒前
26秒前
彭于晏应助zgnb采纳,获得10
26秒前
Hou完成签到 ,获得积分10
26秒前
成就的连虎完成签到,获得积分10
27秒前
OnMyWorldside完成签到,获得积分10
32秒前
科研通AI5应助sherry采纳,获得10
33秒前
33秒前
34秒前
科研通AI5应助轶Y采纳,获得30
34秒前
王大炮完成签到 ,获得积分10
35秒前
Hello应助冰的幻想采纳,获得10
35秒前
weilei完成签到,获得积分10
36秒前
hui发布了新的文献求助10
36秒前
Jasper应助冷傲小猫咪采纳,获得10
37秒前
38秒前
shw完成签到,获得积分10
38秒前
38秒前
D&L完成签到,获得积分10
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793333
求助须知:如何正确求助?哪些是违规求助? 3338077
关于积分的说明 10288655
捐赠科研通 3054718
什么是DOI,文献DOI怎么找? 1676139
邀请新用户注册赠送积分活动 804145
科研通“疑难数据库(出版商)”最低求助积分说明 761757