Prototype Bayesian Meta-Learning for Few-Shot Image Classification

人工智能 计算机科学 初始化 贝叶斯概率 先验概率 推论 贝叶斯推理 嵌入 元学习(计算机科学) 边际似然 概率逻辑 机器学习 任务(项目管理) 管理 程序设计语言 经济
作者
Meijun Fu,Xiaomin Wang,Jun Wang,Yi Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2024.3403865
摘要

Meta-learning aims to leverage prior knowledge from related tasks to enable a base learner to quickly adapt to new tasks with limited labeled samples. However, traditional meta-learning methods have limitations as they provide an optimal initialization for all new tasks, disregarding the inherent uncertainty induced by few-shot tasks and impeding task-specific self-adaptation initialization. In response to this challenge, this article proposes a novel probabilistic meta-learning approach called prototype Bayesian meta-learning (PBML). PBML focuses on meta-learning variational posteriors within a Bayesian framework, guided by prototype-conditioned prior information. Specifically, to capture model uncertainty, PBML treats both meta-and task-specific parameters as random variables and integrates their posterior estimates into hierarchical Bayesian modeling through variational inference (VI). During model inference, PBML employs Laplacian estimation to approximate the integral term over the likelihood loss, deriving a rigorous upper-bound for generalization errors. To enhance the model's expressiveness and enable task-specific adaptive initialization, PBML proposes a data-driven approach to model the task-specific variational posteriors. This is achieved by designing a generative model structure that incorporates prototype-conditioned task-dependent priors into the random generation of task-specific variational posteriors. Additionally, by performing latent embedding optimization, PBML decouples the gradient-based meta-learning from the high-dimensional variational parameter space. Experimental results on benchmark datasets for few-shot image classification illustrate that PBML attains state-of-the-art or competitive performance when compared to other related works. Versatility studies demonstrate the adaptability and applicability of PBML in addressing diverse and challenging few-shot tasks. Furthermore, ablation studies validate the performance gains attributed to the inference and model components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
maxin发布了新的文献求助10
7秒前
9秒前
KEyanba完成签到,获得积分0
10秒前
10秒前
刘小明发布了新的文献求助10
10秒前
我不看月亮完成签到,获得积分10
11秒前
好好学习完成签到 ,获得积分10
13秒前
melenda发布了新的文献求助10
14秒前
搜集达人应助吉吉采纳,获得10
14秒前
Ss发布了新的文献求助10
17秒前
科研_小白完成签到 ,获得积分10
17秒前
20秒前
21秒前
njufeng完成签到,获得积分10
22秒前
22秒前
Diamond发布了新的文献求助10
25秒前
28秒前
Tender发布了新的文献求助10
28秒前
彭于晏应助22222采纳,获得10
31秒前
23xyke完成签到,获得积分10
32秒前
33秒前
感性的大楚完成签到 ,获得积分10
37秒前
等下完这场雨完成签到,获得积分10
37秒前
38秒前
情怀应助路过的热心群众采纳,获得10
45秒前
45秒前
周大聪明完成签到,获得积分10
45秒前
vv完成签到,获得积分10
49秒前
50秒前
maclogos发布了新的文献求助10
50秒前
50秒前
XiaoShu完成签到,获得积分10
51秒前
52秒前
Diamond完成签到,获得积分10
55秒前
vv发布了新的文献求助10
56秒前
xxx7749发布了新的文献求助10
57秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323580
关于积分的说明 10215083
捐赠科研通 3038764
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315