清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TA-YOLO: a lightweight small object detection model based on multi-dimensional trans-attention module for remote sensing images

计算机科学 人工智能 目标检测 计算机视觉 特征(语言学) 过程(计算) 模式识别(心理学) 哲学 语言学 操作系统
作者
Minze Li,Yuling Chen,Tao Zhang,Wu Huang
出处
期刊:Complex & Intelligent Systems 卷期号:10 (4): 5459-5473 被引量:16
标识
DOI:10.1007/s40747-024-01448-6
摘要

Abstract Object detection plays a vital role in remote sensing applications. Although object detection has achieved proud results in natural images, these methods are difficult to be directly applied to remote sensing images. Remote sensing images often have complex backgrounds and small objects, which results in a highly unbalanced distribution of foreground and complex background information. In order to solve the above problems, this paper proposes a multi-head channel and spatial trans-attention (MCSTA) module, which performs remote pixel interaction from the channel and spatial dimensions respectively to complete the attention feature capture function. It is a plug-and-play module that can be easily embedded in any other natural image object detection convolutional neural network, making it quickly applicable to remote sensing images. First, in order to reduce computational complexity and improve feature richness, we use a special linear convolution to obtain three projection features instead of the simple matrix multiplication transformation in Transformer. Second, we obtain trans-attention maps in different dimensions in a manner similar to the self-attention mechanism to capture the interrelationships of features in channels and spaces. In this process, we use a multi-head mechanism to perform parallel operations to improve speed. Furthermore, in order to avoid large-scale matrix operations, we specially designed an attention blocking mode to reduce computer memory usage and increase operation speed. Finally, we embedded the trans-attention module into YOLOv8, added a new detection head and optimized the feature fusion method, thus designing a lightweight small object detection model named TA-YOLO for remote sensing images. It has fewer parameters than the benchmark model YOLOv8, and its mAP on the PASCAL VOC and VisDrone data sets increased by 1.3% and 6.2% respectively. The experimental results prove the powerful function of the trans-attention module and the excellent performance of TA-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好灵寒完成签到 ,获得积分10
13秒前
17秒前
23秒前
最最最发布了新的文献求助10
30秒前
orezot完成签到 ,获得积分10
36秒前
40秒前
50秒前
量子星尘发布了新的文献求助10
56秒前
Akim应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
苏楠发布了新的文献求助30
2分钟前
2分钟前
量子星尘发布了新的文献求助30
2分钟前
gzf完成签到 ,获得积分10
2分钟前
Virtual应助科研通管家采纳,获得10
3分钟前
3分钟前
淡淡乐巧完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
lod完成签到,获得积分10
3分钟前
4分钟前
苏楠完成签到 ,获得积分10
4分钟前
紫熊发布了新的文献求助10
4分钟前
神经蛙完成签到,获得积分10
4分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
5分钟前
muriel完成签到,获得积分0
5分钟前
紫熊发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
顾矜应助天秤小兔兔采纳,获得10
5分钟前
务实的奇迹完成签到 ,获得积分10
6分钟前
紫熊驳回了MMMMM应助
6分钟前
perfect完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4262031
求助须知:如何正确求助?哪些是违规求助? 3794880
关于积分的说明 11899387
捐赠科研通 3441839
什么是DOI,文献DOI怎么找? 1888793
邀请新用户注册赠送积分活动 939521
科研通“疑难数据库(出版商)”最低求助积分说明 844593