Establishment and Verification of an Artificial Intelligence Prediction Model for Children With Sepsis

败血症 决策树 医学 贝叶斯网络 人工神经网络 观察研究 机器学习 人工智能 急诊医学 计算机科学 内科学
作者
Li Wang,Yuhui Wu,Yong Ren,Fan-Fan Sun,Shaohua Tao,Hongxin Lin,C.J. Zhang,Wen Tang,Zhuang‐Gui Chen,Chun Chen,Lidan Zhang
出处
期刊:Pediatric Infectious Disease Journal [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (8): 736-742 被引量:2
标识
DOI:10.1097/inf.0000000000004376
摘要

Background: Early identification of high-risk groups of children with sepsis is beneficial to reduce sepsis mortality. This article used artificial intelligence (AI) technology to predict the risk of death effectively and quickly in children with sepsis in the pediatric intensive care unit (PICU). Study Design: This retrospective observational study was conducted in the PICUs of the First Affiliated Hospital of Sun Yat-sen University from December 2016 to June 2019 and Shenzhen Children’s Hospital from January 2019 to July 2020. The children were divided into a death group and a survival group. Different machine language (ML) models were used to predict the risk of death in children with sepsis. Results: A total of 671 children with sepsis were enrolled. The accuracy (ACC) of the artificial neural network model was better than that of support vector machine, logical regression analysis, Bayesian, K nearest neighbor method and decision tree models, with a training set ACC of 0.99 and a test set ACC of 0.96. Conclusions: The AI model can be used to predict the risk of death due to sepsis in children in the PICU, and the artificial neural network model is better than other AI models in predicting mortality risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助黑痴采纳,获得10
刚刚
刚刚
刚刚
香蕉觅云应助自信的盼海采纳,获得10
刚刚
呆萌枕头完成签到,获得积分10
刚刚
刚刚
yuyu发布了新的文献求助10
刚刚
wanci应助大胆的厉采纳,获得10
刚刚
一颗松发布了新的文献求助10
1秒前
积极慕晴完成签到,获得积分10
1秒前
shijie完成签到,获得积分10
1秒前
2秒前
2秒前
明理念桃完成签到,获得积分10
2秒前
lf发布了新的文献求助10
2秒前
xia发布了新的文献求助10
2秒前
SRsora发布了新的文献求助10
3秒前
4秒前
晴朗发布了新的文献求助10
4秒前
完美世界应助伏坎采纳,获得30
4秒前
yuqinglei完成签到,获得积分10
5秒前
5秒前
夏天呀完成签到,获得积分10
5秒前
陈椅子的求学完成签到,获得积分10
6秒前
111完成签到,获得积分10
6秒前
研友_VZG7GZ应助Cyrus2022采纳,获得10
6秒前
CipherSage应助Cyrus2022采纳,获得20
6秒前
小宋同学发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
李健的小迷弟应助Cyrus2022采纳,获得10
6秒前
英姑应助Cyrus2022采纳,获得10
6秒前
wanci应助Cyrus2022采纳,获得10
6秒前
万能图书馆应助Cyrus2022采纳,获得30
6秒前
Orange应助Cyrus2022采纳,获得30
6秒前
SciGPT应助Cyrus2022采纳,获得10
6秒前
领导范儿应助Cyrus2022采纳,获得20
6秒前
7秒前
谷之森完成签到,获得积分10
7秒前
完美世界应助Aaron采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708501
求助须知:如何正确求助?哪些是违规求助? 5188470
关于积分的说明 15254044
捐赠科研通 4861497
什么是DOI,文献DOI怎么找? 2609497
邀请新用户注册赠送积分活动 1560013
关于科研通互助平台的介绍 1517781