Classification of Driver Cognitive Load in Conditionally Automated Driving: Utilizing Electrocardiogram-Based Spectrogram with Lightweight Neural Network

光谱图 人工神经网络 计算机科学 认知 认知负荷 人工智能 工程类 语音识别 心理学 神经科学
作者
Wenxin Shi,Z. D. Wang,Ange Wang,Dengbo He
出处
期刊:Transportation Research Record [SAGE Publishing]
被引量:3
标识
DOI:10.1177/03611981241252797
摘要

With the development of conditionally automated driving, drivers will be allowed to perform non-driving-related tasks. Under such circumstances, continuous monitoring of driver cognitive load will play an increasingly important role in ensuring that drivers have sufficient mental resources to take over control of the vehicle should the driving automation fail. However, estimation of cognitive load is challenging because of the difficulties in identifying high-level feature representation and accounting for interindividual differences. Physiological measures are believed to be promising candidates for cognitive load estimation in partially automated vehicles. However, current estimation methods are mainly based on the manual feature extraction of time- or frequency-domain indicators from physiological signals, which may not adapt to dynamic driving conditions. With the development of deep learning, the neural network has shown good performance in automatically capturing high-level features from input data. Inspired by this, we adopted a novel approach to classify driver cognitive load based on electrocardiogram (ECG) spectrograms, in which the driver’s ECG signal was collected and transformed into a 2D spectrogram by a short-time Fourier transform. A squeeze-and-excitation network-based deep-learning framework that can capture high-level features and pays more attention to the cognition-related features of the spectrogram was proposed for classification. Experiments on a publicly available dataset demonstrated that our model achieved an accuracy of 96.76% in differentiating two levels of cognitive load for a within-subject evaluation and 71.50% accuracy with an across-subjects evaluation. The results demonstrated the feasibility of detecting drivers’ cognitive load through deep learning using ECG spectrogram alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyi完成签到,获得积分10
刚刚
achaia发布了新的文献求助10
1秒前
1秒前
萧布发布了新的文献求助10
3秒前
3秒前
3秒前
咕噜完成签到 ,获得积分10
4秒前
逝水完成签到 ,获得积分10
6秒前
LiaoKaijian发布了新的文献求助10
6秒前
上官若男应助kuny采纳,获得10
10秒前
缓慢又蓝发布了新的文献求助20
10秒前
居单在此完成签到,获得积分10
13秒前
桃花岛岛主完成签到,获得积分10
15秒前
16秒前
16秒前
18秒前
18秒前
19秒前
李颖雪发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
22秒前
22秒前
良辰发布了新的文献求助10
22秒前
mymEN完成签到 ,获得积分10
23秒前
25秒前
kuny发布了新的文献求助10
25秒前
科研通AI5应助张泽崇采纳,获得10
26秒前
26秒前
乐怡日尧发布了新的文献求助10
27秒前
安安放完成签到,获得积分10
27秒前
良辰完成签到,获得积分0
29秒前
29秒前
旅途之人发布了新的文献求助10
30秒前
奋斗的蜗牛应助Youtenter采纳,获得10
33秒前
35秒前
骑驴找马发布了新的文献求助10
38秒前
李颖雪完成签到,获得积分20
38秒前
美好的嫣娆完成签到,获得积分20
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844