Segment-anything embedding for pixel-level road damage extraction using high-resolution satellite images

像素 计算机科学 卫星 分割 鉴定(生物学) 人工智能 遥感 卫星图像 深度学习 计算机视觉 地理 工程类 航空航天工程 植物 生物
作者
Shuangcheng Zhang,Xiaoning He,Bowei Xue,Tong Wu,Keying Ren,Tong Zhao
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:131: 103985-103985 被引量:6
标识
DOI:10.1016/j.jag.2024.103985
摘要

When a strong earthquake occurs, roads are the lifelines of rescue. The rapid development of high-resolution satellite imaging platforms has made the application of remote sensing technology for road damage identification possible. Over the years, road damage identification has required a significant amount of manual involvement, making it difficult to meet the needs of rapid post-disaster response. The automatic recognition of road damage using satellite images has always been difficult. Damaged areas appear in the satellite images with blurry boundaries, versatile sizes, and uneven spatial distributions. With the aim of automatic pixel-level road damage identification, we introduce the first road damage dataset, CAU-RoadDamage, which includes high-resolution satellite images and pixel-level human annotations. Moreover, we propose the application of a pre-trained vision foundation model for the first time to automatically identify road damage. Low-rank adaptation technology is used to fine-tune the foundation model on the satellite images, and two-way attention is used to integrate the foundation model with domain specialist model components. The proposed segmentation model is compared to multiple state-of-the-art methods on the CAU-RoadDamage dataset. Our approach achieves the highest F1 of 76.09%, which is notably higher than that of the other models. The experimental results demonstrate the feasibility of pixel-level road damage recognition and the applicability of vision foundation models for downstream remote sensing tasks. The CAU-RoadDamage dataset will be made publicly available at https://github.com/CAU-HE/RoadDamageExtraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盏盏发布了新的文献求助10
刚刚
刚刚
Xiongtao发布了新的文献求助10
1秒前
恣意完成签到 ,获得积分10
1秒前
苏莉婷发布了新的文献求助10
2秒前
科研通AI6应助zxl采纳,获得10
2秒前
聆听完成签到,获得积分10
2秒前
英姑应助张立敏采纳,获得10
2秒前
可爱的函函应助syx采纳,获得10
2秒前
干净的醉波完成签到,获得积分10
2秒前
弯弯发布了新的文献求助10
3秒前
瘦瘦绿旋完成签到 ,获得积分10
3秒前
hrq发布了新的文献求助10
4秒前
共享精神应助青桔采纳,获得10
4秒前
研友_VZG7GZ应助磊磊猪采纳,获得10
4秒前
5秒前
5秒前
6秒前
hey应助Stella采纳,获得50
6秒前
7秒前
7秒前
8秒前
luster发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
搜集达人应助wlei采纳,获得10
8秒前
CCC发布了新的文献求助10
9秒前
10秒前
11秒前
Jasper应助weihua采纳,获得10
11秒前
子车茗应助冷静灵竹采纳,获得30
11秒前
12秒前
12秒前
粗暴的大门完成签到 ,获得积分10
12秒前
12秒前
12秒前
小马甲应助谢小盟采纳,获得20
12秒前
12秒前
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341805
求助须知:如何正确求助?哪些是违规求助? 4477914
关于积分的说明 13937122
捐赠科研通 4374126
什么是DOI,文献DOI怎么找? 2403300
邀请新用户注册赠送积分活动 1396120
关于科研通互助平台的介绍 1368147