Segment-anything embedding for pixel-level road damage extraction using high-resolution satellite images

像素 计算机科学 卫星 分割 鉴定(生物学) 人工智能 遥感 卫星图像 深度学习 计算机视觉 地理 工程类 植物 生物 航空航天工程
作者
Shuangcheng Zhang,Xiaoning He,Bowei Xue,Tong Wu,Ke-Ying Ren,Tong Zhao
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:131: 103985-103985 被引量:2
标识
DOI:10.1016/j.jag.2024.103985
摘要

When a strong earthquake occurs, roads are the lifelines of rescue. The rapid development of high-resolution satellite imaging platforms has made the application of remote sensing technology for road damage identification possible. Over the years, road damage identification has required a significant amount of manual involvement, making it difficult to meet the needs of rapid post-disaster response. The automatic recognition of road damage using satellite images has always been difficult. Damaged areas appear in the satellite images with blurry boundaries, versatile sizes, and uneven spatial distributions. With the aim of automatic pixel-level road damage identification, we introduce the first road damage dataset, CAU-RoadDamage, which includes high-resolution satellite images and pixel-level human annotations. Moreover, we propose the application of a pre-trained vision foundation model for the first time to automatically identify road damage. Low-rank adaptation technology is used to fine-tune the foundation model on the satellite images, and two-way attention is used to integrate the foundation model with domain specialist model components. The proposed segmentation model is compared to multiple state-of-the-art methods on the CAU-RoadDamage dataset. Our approach achieves the highest F1 of 76.09%, which is notably higher than that of the other models. The experimental results demonstrate the feasibility of pixel-level road damage recognition and the applicability of vision foundation models for downstream remote sensing tasks. The CAU-RoadDamage dataset will be made publicly available at https://github.com/CAU-HE/RoadDamageExtraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
karcorl完成签到,获得积分10
刚刚
1秒前
鲁路修发布了新的文献求助10
2秒前
茶荼发布了新的文献求助10
3秒前
4秒前
哈利波特发布了新的文献求助10
6秒前
乐乐应助茶荼采纳,获得10
7秒前
Serena发布了新的文献求助10
7秒前
7秒前
彭于晏应助无限的谷丝采纳,获得10
8秒前
着急的cc完成签到,获得积分10
8秒前
天天快乐应助xin采纳,获得10
9秒前
10秒前
在水一方应助易槐采纳,获得10
11秒前
梓毅发布了新的文献求助20
11秒前
着急的cc发布了新的文献求助10
12秒前
18秒前
852应助郭宇采纳,获得10
19秒前
淡然的金针菇完成签到,获得积分20
19秒前
babyhead发布了新的文献求助10
22秒前
医学小王发布了新的文献求助10
23秒前
23秒前
eee应助HiNDT采纳,获得10
25秒前
fuiee完成签到,获得积分10
27秒前
27秒前
28秒前
郭宇发布了新的文献求助10
33秒前
Lsh173373完成签到 ,获得积分10
35秒前
35秒前
cxw发布了新的文献求助10
38秒前
毛豆爸爸发布了新的文献求助10
40秒前
士艳完成签到,获得积分10
40秒前
Akim应助丹丹采纳,获得30
41秒前
CipherSage应助晴天晒太阳采纳,获得10
42秒前
maggie完成签到 ,获得积分10
45秒前
46秒前
46秒前
47秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976