亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drug repositioning based on tripartite cross-network embedding and graph convolutional network

计算机科学 药品 药物重新定位 图形 嵌入 机器学习 水准点(测量) 药物发现 人工智能 数据挖掘 理论计算机科学 生物信息学 医学 药理学 大地测量学 生物 地理
作者
Pan Zeng,Bofei Zhang,Aohang Liu,Yajie Meng,Xianfang Tang,Jialiang Yang,Junlin Xu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:252: 124152-124152 被引量:5
标识
DOI:10.1016/j.eswa.2024.124152
摘要

Drug-disease association prediction is an important part of drug discovery, which can help researchers uncover potential drug candidates and disease targets more accurately to deal with the drawbacks of inefficiency and high cost of traditional methods. In contrast, past drug-disease prediction processes often overlooked the associations between drugs and side effects and the impact of proteins on diseases. These issues hindered models from fully learning the potential information within the network. Hence, a method capable of comprehensively learning from multi-source heterogeneous information and extracting high-level features of biological associations is needed. To overcome these challenges, proposes a drug repositioning method based on a tripartite cross-network embedding graph convolutional network, called TGCNDR, to predict the associations between drugs and diseases. Firstly, we construct a tripartite cross-network of drug-disease associations, drug-protein associations, and drug-side effect associations. TGCNDR employs graph convolutional networks to capture information from different nodes to learn drug embedding. Subsequently, TGCNDR uses anchor links for knowledge transfer, and different networks use the Self-attention mechanism to represent drug importance. Experiments on benchmark datasets demonstrate that TGCNDR exhibits good performance(the average AUROC is 0.922, the average AUPR is 0.916, and the average F1-score is 0.860) compared with state-of-the-art methods. In the case study, we perform molecular docking experiments on the predicted drug candidates and identify newly approved drugs for osteosarcoma, which suggests that TGCNDR is an effective tool for drug repositioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助James采纳,获得10
36秒前
啦啊啦啦啦应助柏风华采纳,获得20
47秒前
CodeCraft应助科研通管家采纳,获得10
1分钟前
bc应助科研通管家采纳,获得20
1分钟前
柏风华完成签到,获得积分10
1分钟前
2分钟前
2分钟前
知行者完成签到 ,获得积分10
2分钟前
Jasmineyfz完成签到 ,获得积分10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
yinlao完成签到,获得积分10
4分钟前
大模型应助南瓜采纳,获得10
4分钟前
bc应助科研通管家采纳,获得30
5分钟前
bc应助科研通管家采纳,获得30
5分钟前
bc应助科研通管家采纳,获得30
5分钟前
5分钟前
南瓜发布了新的文献求助10
5分钟前
5分钟前
南瓜完成签到,获得积分10
5分钟前
6分钟前
James发布了新的文献求助10
6分钟前
小蘑菇应助科研通管家采纳,获得10
7分钟前
andrele应助科研通管家采纳,获得10
7分钟前
高数数完成签到 ,获得积分10
8分钟前
8分钟前
moroa完成签到,获得积分10
9分钟前
___淡完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
Eason完成签到,获得积分10
9分钟前
史前巨怪完成签到,获得积分10
10分钟前
ycw7777完成签到,获得积分10
11分钟前
幽默发夹发布了新的文献求助10
12分钟前
幽默发夹完成签到,获得积分10
12分钟前
12分钟前
哇哈哈发布了新的文献求助10
12分钟前
Jasper应助哇哈哈采纳,获得10
13分钟前
科研通AI2S应助科研通管家采纳,获得10
13分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795558
求助须知:如何正确求助?哪些是违规求助? 3340610
关于积分的说明 10300696
捐赠科研通 3057127
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762529