A numerical simulation-based ANN method to determine the shear strength parameters of rock minerals in nanoscale

纳米压痕 凝聚力(化学) 材料科学 缩进 长石 弹性模量 云母 摩擦角 复合材料 石英 模数 材料性能 岩土工程 地质学 物理 量子力学
作者
Qing Lü,Shihao Liu,Wei-ze Mao,Yang Yu,Xu Long
出处
期刊:Computers and Geotechnics [Elsevier BV]
卷期号:169: 106175-106175 被引量:13
标识
DOI:10.1016/j.compgeo.2024.106175
摘要

Rock is a heterogeneous material composed of multiple minerals, whose microscopic mechanical properties have a significant impact on the macroscopic mechanical properties of rocks. The elastic modulus and hardness of minerals could be measured by nanoindentation tests. However, determination of shear strength parameters (e.g., the cohesion and friction angle) of minerals in nanoscale is still a challenging work. In this paper, an elasto-plastic numerical model with Drucker-Prager failure criterion is established to simulate the nanoindentation tests. Uniform design is adopted to generate typical input parameters (e.g., elastic modulus, cohesion and friction angle) for the numerical model, by which the indentation load-penetration depth curve (P-h curve) corresponding to the typical input parameters are calculated. The artificial neural network (ANN) is trained to quantify the relationship between the input parameters and the P-h curve with high efficiency and accuracy. With a proposed optimization algorithm, the optimal input parameters such as the cohesion and friction angle, that achieve the minimum error between the simulated P-h curve by the ANN and the measured P-h curve by nanoindentation tests, could be determined. The proposed method is applied to determine the cohesions and friction angles of quartz, feldspar, and mica in granite. The results show that quartz exhibits the highest mechanical strength among the three minerals, and mica shows a greater discreteness. The results of this study will provide an effective method to obtain the microscopic mechanical properties of minerals and help to study the macroscopic mechanical properties of rock from microscopic perspective in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
书羽发布了新的文献求助10
1秒前
追寻白亦发布了新的文献求助10
1秒前
时尚颖发布了新的文献求助10
2秒前
3秒前
星辰大海应助xiaobai采纳,获得10
3秒前
顾白凡完成签到,获得积分0
3秒前
Orange应助勤恳含烟采纳,获得10
4秒前
典雅的迎波完成签到,获得积分10
5秒前
可爱的逊发布了新的文献求助10
5秒前
5秒前
菠萝披萨发布了新的文献求助10
6秒前
cdercder应助坚强惜海采纳,获得10
6秒前
7秒前
7秒前
8秒前
传奇3应助sunzhuxi采纳,获得10
8秒前
摸鱼人完成签到,获得积分10
9秒前
呀呀呀完成签到,获得积分10
9秒前
sw完成签到,获得积分10
10秒前
火星上妙梦完成签到,获得积分10
10秒前
10秒前
10秒前
答题不卡发布了新的文献求助10
10秒前
11秒前
kingsley320完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
蒙蒙完成签到,获得积分10
12秒前
12秒前
潇洒的冰烟完成签到,获得积分10
13秒前
aqaqaqa完成签到,获得积分10
13秒前
天生圣人发布了新的文献求助10
13秒前
完美夏天完成签到,获得积分10
13秒前
13秒前
风中傻姑发布了新的文献求助10
13秒前
Levon应助寻风采纳,获得30
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809722
求助须知:如何正确求助?哪些是违规求助? 3354237
关于积分的说明 10369760
捐赠科研通 3070510
什么是DOI,文献DOI怎么找? 1686393
邀请新用户注册赠送积分活动 810922
科研通“疑难数据库(出版商)”最低求助积分说明 766433