清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

HANSynergy: Heterogeneous Graph Attention Network for Drug Synergy Prediction

计算机科学 异构网络 交互网络 图形 公共化学 机器学习 人工智能 数据挖掘 计算生物学 理论计算机科学 生物 电信 生物化学 无线网络 无线 基因
作者
Ning Cheng,Li Wang,Yiping Liu,Bosheng Song,Changsong Ding
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4334-4347
标识
DOI:10.1021/acs.jcim.4c00003
摘要

Drug synergy therapy is a promising strategy for cancer treatment. However, the extensive variety of available drugs and the time-intensive process of determining effective drug combinations through clinical trials pose significant challenges. It requires a reliable method for the rapid and precise selection of drug synergies. In response, various computational strategies have been developed for predicting drug synergies, yet the exploitation of heterogeneous biological network features remains underexplored. In this study, we construct a heterogeneous graph that encompasses diverse biological entities and interactions, utilizing rich data sets from sources, such as DrugCombDB, PubChem, UniProt, and cancer cell line encyclopedia (CCLE). We initialize node feature representations and introduce a novel virtual node to enhance drug representation. Our proposed method, the heterogeneous graph attention network for drug–drug synergy prediction (HANSynergy), has been experimentally validated to demonstrate that the heterogeneous graph attention network can extract key node features, efficiently harness the diversity of information, and further enhance network functionality through the incorporation of a multihead attention mechanism. In the comparative experiment, the highest accuracy (Acc) and area under the curve (AUC) are 0.877 and 0.947, respectively, in DrugCombDB_early data set, demonstrating the superiority of HANSynergy over the competing methods. Moreover, protein–protein interactions are important in understanding the mechanism of action of drugs. The heterogeneous attention mechanism facilitates protein–protein interaction analysis. By analyzing the changes of attention weight before and after heterogeneous network training, we investigated proteins that may be associated with drug combinations. Additionally, case studies align our findings with existing research, underscoring the potential of HANSynergy in drug synergy prediction. This advancement not only contributes to the burgeoning field of drug synergy prediction but also holds the potential to provide valuable insights and uncover new drug synergies for combating cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落落完成签到 ,获得积分0
44秒前
50秒前
优雅山柏发布了新的文献求助10
56秒前
1分钟前
皮卡丘完成签到,获得积分10
1分钟前
努力努力再努力完成签到,获得积分10
1分钟前
Leon Lai完成签到,获得积分10
1分钟前
111完成签到 ,获得积分10
2分钟前
岳莹晓完成签到 ,获得积分10
2分钟前
陈陈陈完成签到 ,获得积分10
2分钟前
foyefeng完成签到 ,获得积分10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
3分钟前
非洲大象发布了新的文献求助50
3分钟前
研友_nxw2xL完成签到,获得积分10
3分钟前
muriel完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
非洲大象完成签到,获得积分10
3分钟前
violetlishu完成签到 ,获得积分10
3分钟前
有只小狗完成签到,获得积分10
4分钟前
hunbaekkkkk完成签到 ,获得积分10
5分钟前
orixero应助ma采纳,获得10
5分钟前
5分钟前
杨志坚完成签到 ,获得积分10
5分钟前
热狗完成签到 ,获得积分10
6分钟前
6分钟前
星辰大海应助葛力采纳,获得10
7分钟前
lilaccalla完成签到 ,获得积分10
7分钟前
7分钟前
ma发布了新的文献求助10
7分钟前
8分钟前
dylanqy发布了新的文献求助30
8分钟前
8分钟前
优雅山柏发布了新的文献求助10
8分钟前
8分钟前
zoe完成签到 ,获得积分10
9分钟前
王_123123123123w完成签到 ,获得积分10
9分钟前
dylanqy完成签到,获得积分10
9分钟前
huangzsdy完成签到,获得积分10
9分钟前
ChiHiRo9Q完成签到,获得积分10
9分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526431
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603